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ABSTRACT

Accurate modeling of interconnect structures is an important issue in modern high-

frequency circuit and chip design; such as the accurate computation of the frequency-

dependent internal impedance of interconnect structures, like wires and conducting

strips, and the accurate and efficient electromagnetic (EM) modeling for shielded mi-

crostrip structures, especially in multilayered medium.

In the first part of this dissertation, a rigorous volume integral equation (VIE) is de-

veloped for the current distributions over two-dimensional conducting cylinders. For very

low frequencies, it can be reduced to the widely-used quasi-static approximation. The

different VIEs, surface integral equation (SIE), and partial differential equation (PDE)

with Dirichlet boundary condition method are used to calculate the current distributions.

The VIE with quasi-static approximation for good conductor is not accurate enough for

the current distributions as there is a constant ratio between the results calculated from

the quasi-static VIE and SIE. Two more leading terms from the Hankel function have

been added into the integral kernel to solve this problem. We also calculate the internal

impedance by using the different VIEs and the PDE with Dirichlet boundary condition

method. The different results between VIE and PDE methods are due to the different

boundary conditions.

In the second part of this dissertation, the novel acceleration approaches for spectral

domain approach (SDA) over single layer substrate and for spectral domain immitance

approach (SDIA) over multilayered substrates have been developed using one of the most

promising extrapolation method–the Levin’s transformation. It avoids the leading term

extraction of the Green’s functions and the Bessel’s functions (basis functions) by re-
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casting the summation kernel to a suitable form which can be applied in the Levin’s

transformation. The extrapolation delay has been introduced to successfully apply the

Levin’s transformation. Accurate results have been obtained for the propagation con-

stant by only using twenty to thirty terms. The final accuracy could be further improved

if only the first leading term added with the Levin’s transformation. The new techniques

match with or are even better than other acceleration techniques with high order leading

term extraction. The two-dimensional PMCHWT formulation was developed from inter-

nal and external equivalent problems, along with the spatial and spectral domain dyadic

Green’s functions to deal with the arbitrary cross section and finite conductivity of mul-

tiple metal lines over multilayered substrates. The pulse and triangular basis were chosen

to be applied in the Galerkin method. The matrix elements were calculated from spatial

domain integration in internal equivalent problem, while in external equivalent problem

we need to transfer the spatial domain integration into spectral domain summation.
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CHAPTER 1. INTRODUCTION

The dissertation introduces and discusses of the electromagnetic modeling for high

speed interconnects, and is comprised of two parts. Part I is on the accurate model-

ing of the current distribution and internal impedance of interconnects in homogeneous

medium. Different integral equations and different definitions are developed to analyze

the current distribution and the internal impedance. Part II is focused on the novel accel-

eration approaches of accurate and efficient electromagnetic modeling for the generalized

shielded microstrip line structures with single or multiple metal lines in multilayered

medium. Extrapolation methods are used to accelerate the spectral domain approach

with the method of moments (MoM) to calculate the propagation constant and the

effective permittivity of the microstrip lines.

1.1 Introduction to Current Distribution and Impedance of

Interconnects

1.1.1 Research motivation

Accurate modeling of interconnect structures is an important issue in modern high-

frequency circuit and chip design. Especially the accurate computation of the frequency-

dependent internal impedance of interconnect structures, like wires and conducting

strips, of the type encountered in planar integrated circuits (ICs) is an important consid-

eration for the accurate assessment of loss and dispersion in high-speed signaling. The

on-chip interconnect structure in modern very large scale integrated (VLSI) circuits is
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a highly complicated electromagnetic system as shown in Figure 1.1. The full structure

may connect more than one million transistors that are hosted on a silicon substrate and

may contain up to seven metalization layers. Now, the electronics industry has entered

an era where interconnect delays are the most significant limitation in the overall per-

formance of a high speed digital system. For the submicron-geometry chips, it is the

interconnection delays rather than the device delays that determine the chips. Intercon-

nect delay will soon become the main bottle neck for increasing the operation frequencies

of the fully integrated circuits. New approaches are needed to lower the interconnection

delays. One of the key part of an excellent interconnect is to minimize skin effect. Skin

effect occurs when the high-frequency currents flow on the outer skin of the conductors

whereas lower frequencies have more uniform current distribution across the conductor

cross-section. The effect is that the impedance is different for low frequencies than high

frequencies. This difference in impedance can cause serious problem such as attenuation,

dispersion and phase shifts in signal integrity. The losses also have an important impact

on the signal integrity due to attenuation and dispersion.

Signal integrity primarily involves the electrical performance of the wires and other

packaging structures used to move signals about within an electronic product. This topic

is an important activity at all levels of electronics packaging and assembly, from internal

connections of an IC, through the package, the printed circuit board (PCB), the back-

plane, and inter-system connections [2]. On PCBs, signal integrity becomes a serious

concern when the transition times of signals start to become comparable to the propa-

gation time across the board. As speed increases, a larger and larger fraction of signals

need integrity analysis. Roughly speaking, essentially all signals must be designed with

signal integrity in mind when frequency larger than 100 MHz. In modern IC industry,

scaling trends brought electrical effects back to the forefront in recent technology nodes.

With scaling of technology below 0.25 µm, the wire delays have become comparable or

even greater than the gate delays. So the wire delays are needed to be considered to
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Figure 1.1 The cross section of an IBM multi-level interconnect structure [1]

achieve timing closure. In nanometer technologies at 0.13 µm and below, unintended in-

teractions between signals (e.g. crosstalk) become an important consideration for digital

design. At these technology nodes, the performance and correctness of a design cannot

be assured without considering noise effects.

To do a good signal integrity analysis, parasitic extraction can be a huge help. Para-

sitic extraction is calculation of the parasitic effects in both the designed devices and the

required wiring interconnects of an electronic circuit: detailed device parameters, para-

sitic capacitances, parasitic resistance and parasitic inductances. The major purpose of

parasitic extraction is to create an accurate analog model of the circuit, so that detailed

simulations can emulate actual digital and analog circuit responses [3]. Another fact is

that parasitic capacitances and inductances associated with the interconnections in the

high density environment of the IC have become the primary factors in the evolution of
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the very high speed IC technology. In early ICs the impact of the wiring was negligible,

and wires were not considered as electrical elements of the circuit. However, below the

0.5 µm technology node resistance, capacitance and inductance of interconnects start

making a significant impact on circuit performance. The continuous downscaling of the

pitch implies that parasitic effects become a major design concern.

For accurate signal integrity simulations of on-chip interconnect structures, a broad-

band transmission line model is required. In the near future, systems with speed of

40 Gbit/s and higher will be developed, for which undesired effects as mentioned above

(signal delay, attenuation, dispersion, loss, and cross-talk) on interconnects are becoming

problematic. These effects can be predicted by a transmission line model that rigorously

takes into account the material properties and geometry of the considered structures.

An accurate modeling of interconnects is necessary for the development of high speed

systems. Such a 2-D model is developed for the determination of the quasi-TM resistance

and inductance. Predicting signal delay, attenuation, and dispersion on these intercon-

nects demands the accurate determination of the circuit parameters, i.e., capacitance,

inductance, conductance and resistance per unit length (p.u.l.), and hence demands the

accurate calculation of the current distributions flowing inside the conducting wires. For

the usual application to transmission line problems, the conductors are assumed infinitely

long so that the computation of these parameters is a 2-D problem in the transverse or

cross-sectional plane of the line.

1.1.2 Literature review

Many scientists have focused on this topic discussed here, and some good work was

done for the skin effect and losses in rectangular conductors [4–18]. The earliest research

on interconnect losses is well summarized in [10], for example, Wheelers incremental

inductance rule, where the magnetic field generated by the axial current flow is used to

calculate the losses, under an assumption that the real and imaginary parts of the high-
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frequency internal impedance per unit length is equal. The calculation of p.u.l. internal

impedance for an isolated 2-D conducting cylinder with circular cross section (a wire) is

well known as the analytical result of [19]. The p.u.l. internal impedance for an isolated

2-D conducting rectangular cylinder can be calculated by means of a volume integral

equation (VIE) and volume discretization with Galerkins method in [20], which showed

an important deviation from Wheelers rule. However, this topic has prompted some

intriguing discussion in the literature [21–23]. The quasi-static approximation is widely

used in practical engineering problems like analysis of current carrying conductors [24],

and internal impedance of conductors [20, 25]. In addition to VIE, Surface integral

equation (SIE) can also be used to calculate the surface equivalent currents along the

boundary of a conductor [26], and then get the current distribution within the conductor

by using these surface equivalent currents to calculate the electric field everywhere inside

the conductor [27]. Given the same excitation sources, the numerical results calculated

from VIE and SIE should be the same, but we found there is a constant ratio between

them. Another way to calculate the current distributions of rectangular cross sections

cylinder is given by an analytical series expression by solving partial different equation

(PDE) with Dirichlet boundary conditions [25].

1.1.3 Research work

In Chapter 2, we develop an accurate volume integral equation (VIE) rigorously for

the current distribution within a conductor with arbitrary cross section. This accu-

rate VIE is compared with widely used quasi-static VIEs and surface integral equations

(SIE) by using MoM to solve the current distribution within a rectangular cross section

conductor. The different partial differential equations (PDEs) obtained in quasi-static

approximation and rigorous approaches require different Green’s functions to get the so-

lutions: logarithm and Hankel functions, respectively. By expanding the Hankel function

for small arguments, two more leading terms should be added into the quasi-static VIE’s
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integral kernel to cancel the constant ratio mentioned above.

We analyze the influence of different definitions and different boundary conditions

on the calculation of internal impedance. Numerical results of rectangular and square

conductors by using the quasi-static VIE, modified VIE, accurate VIE, SIE, and PDE

with Dirichlet boundary conditions are given.

1.2 Introduction to Acceleration of SDA for Shielded

Microstrip Lines

1.2.1 Research motivation

The microstrip line is the most popular transmission line used in microwave inte-

grated circuits (MICs) for designing components and interconnects due to its various

advantages. They are relatively broadband in frequency. They provide circuits that are

compact and light in weight. They are capable to reduce the losses and to control the

coefficient of expansion. They can easily offer interfaces with other circuits leading to

good compatibility with integrated hybrid circuits. And they are also used in the antenna

design where they show good surface wave immunity gain, and bandwidth enhancement

apart from the good mechanical integration [28]. A microstrip line may be designed

on the different configuration of the substrate layers which could be single, double, or

multilayered materials. Recently, the use of the multilayered substrates has been rapidly

increased at high frequency due to the system-on-chip (SOC) requirement.

A microstrip line with a shielded box is a more realistic circuit configuration, by

covering the basic microstrip configuration with metal top plates on the top and on the

two sides. The main purposes of packaging are to provide mechanical strength, electro-

magnetic (EM) shielding, and heat dissipation in the case of high-power applications.

Packaging must also protect the circuit from moisture, dust, salt spray, and other en-

vironmental contaminants. Moreover, microstrip transmission lines on the silicon can
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be considered as being a shielded environment in these following cases: first, in most

packages and semiconductor backends, dummy metallization, ground planes and vias

are typically placed around the signal interconnnects for both process optimization and

electrical coupling reduction; second, in high density packaging, external electromagnetic

interference (EMI) shielding could be used to limit interaction between components or

a die may be flip-chip assembled above the power or ground plane of an underlaying

package substrate [29].

The on-chip interconnect structure in modern VLSI circuits is a highly complicated

EM system consisting of multiple layers of metal lines, vias, etc. embedded in multiple

layers of lossy medium. Accurate EM modeling is very important for modern high-

frequency circuit and chip design. The increasing demands on the speed and accuracy in

EM simulation tools requires more efficient techniques to speed up the solving process.

In order to increase the speed and accuracy, domain decomposition methods are being

used in recent EM solvers like HFSS 13. The whole problem will be split into domains

using the domain decomposition method and each domain would be analyzed using a

problem specific approach on a separate core in the future version of EM solvers [30].

The second part of this dissertation mainly proposes a novel acceleration technique that

can be used to speed up the solving process of spectral domain approach along with the

method of moments (MoM) for the modeling of a generalized multiple metal lines and

patches embedded in a multilayered shielded interconnect, as shown in Figure 1.2.

1.2.2 Literature review

The full wave spectral domain approach (SDA) along with MoM give reasonable ac-

curacy of propagation constant for shielded microstrips with relative few unknowns. It

is widely used to analyze the transmission line structures. However, the drawback of

SDA is that the infinite summations of slowly convergent spectral domain series require

tense computation and decrease the speed and efficiency. Therefore, several accelera-
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Figure 1.2 A generalized model for shielded multilayered interconnects with multiple
arbitrary cross section metal lines in different layers

tion techniques must be applied to speed up the solving process. In order to accelerate

the convergence of the spectral domain series summation, several techniques based on

asymptotic expansion have been proposed in [31,32]. The technique of [32] recasted the

kernel functions in summation into three parts: one with exponential convergence, one

with 1/nk fast convergence, and one with closed form weakly singular terms. The mid-

point summation (MPS) technique reported in [33] and a super convergent series (SCS)

approach described in [34] have been applied to obtain fast convergence for summation

of the infinite series in the form of sinusoidal functions divided by nk and of 1/nk, after

the spectral domain asymptotic extractions. Furthermore, two different fast convergent

sine cosine series to accelerate the summation of the leading term after the asymptotic

extraction to the Green’s functions and the Bessel functions (basis functions) in the spec-

tral domain are used in [35]. All these works depend on the asymptotic techniques such

as leading term extraction which add the complexity to the derivation and programming.
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The extrapolation methods have been used to solve the EM problem for many years.

Some extrapolation methods have been reviewed for acceleration of the convergence of

Sommerfeld-type integrals which arise in problems like scatterers embedded in planar

multilayered media [36]. Moreover, several popular series transformation methods used

in electromagnetic problems were introduced in [37], like the Shanks transformation [38]

and Wynn’s ε algorithm [39]. The Levin t transformation is better than the Shanks trans-

formation, compared by Levin himself [40]. Blakemore et al. in [41] have found that the

Levin v transformation is more efficient than Wynn’s ε algorithm. Compared with other

extrapolation methods mostly used in solving EM problem, the Levin’s transformation

is the best choice.

Dealing with the metal lines with finite thickness and conductivity is a big challenge in

accurate modeling of multilayered interconnects. The skin depth approximation has been

used to treat the real metal strips, such as surface impedance boundary condition (IBC),

to determine propagation and attenuation constants when the thickness of strip is much

larger than the skin depth [42,43]. The resistive boundary condition (R-card) have been

used in [44] to solve for the propagation constant assuming the strip thickness to be much

smaller than skin depth. The rigorous analysis of the propagation constant of multiple

metal lines with arbitrary cross section in multilayered media is introduced in [45] by

using boundary integral equation in conjunction with the MoM. The multilayered media

dyadic spectral domain Green’s functions are derived based on the transmission line

network analog along the axis normal to the stratification, and mixed-potential integral

equations (MPIE) are used to solve the arbitrarily shaped, three-dimensional objects

embedded in such a medium [46]. Mostly recently, works of analyzing the propagation

of bound and leaky modes in perfectly conducting open single and coupled microstrip

lines with polygonal cross section is reported in [47].



www.manaraa.com

10

1.2.3 Research work

In Chapter 3, the spectral domain approach with the MoM is used to solve for the

propagation constant and effective permittivity of a single layer shielded microstrip. The

infinite summations of slowly convergent spectral domain series are accelerated by using

one of the most promising extrapolation method–the Levin’s transformation. By using

this proposed new acceleration technique, the asymptotic expansion for the spectral

domain Green’s functions and the Bessel functions (basis functions), which are the key

part in many old acceleration techniques [31–35], is avoided. The new technique can

obtain accurate results with relatively small number of terms. It can achieve the same

accuracy as high order leading term extraction techniques does by using the same number

of terms.

In Chapter 4, the proposed new technique in Chapter 3 is further extended to handle

the multilayered shielded microstrip line structures. By recasting the summation kernel

into a suitable form for the Levin’s transformation, one can accelerate the solving process

without doing the high order leading term extraction. This greatly reduces the complex-

ity of solving the multilayered shielded microstrip to get the propagation constant and

effective permittivity.

In Chapter 5, the finite thickness and finite conductivity issue of the metal strip lines

are taken into account as the cross sections of the metal strip lines can be treated as

arbitrary shape as shown in Figure 1.2. The two-dimensional PMCHWT formulation is

derived from external and internal equivalent problems with both equivalent electric and

magnetic currents Js and Ms since it is free from internal resonance problem. The ho-

mogeneous dyadic Green’s function is used to solve for the internal equivalent problem,

and the layered medium spectral domain dyadic Green’s function and transmission line

Green’s function are used to solve for the external equivalent problem. The subdomain

current basis used in longitudinal direction is pulse basis, while the transverse current

basis is chosen as triangular basis according to the physical property of the current distri-
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butions. The direct spatial domain integrations are calculated in the internal equivalent

problem, while the spatial domain integrations are transfered to spectral domain sum-

mation in the external equivalent problem.
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CHAPTER 2. CURRENT DISTRIBUTION AND

IMPEDANCE OF INTERCONNECTS

In this chapter, a rigorous volume integral equation (VIE) is developed for the current

distributions over two-dimensional conducting cylinders. For very low frequencies, it can

be reduced to the widely-used quasi-static approximation. The different VIEs, surface

integral equation (SIE), and partial differential equation (PDE) with Dirichlet boundary

condition method are used to calculate the current distribution. A comparison between

the numerical results applied to square and rectangular cross sections shows that the

accurate VIE gives almost the same results as the SIE, but the VIE with quasi-static

approximation for good conductor is not accurate enough for the current distribution as

there is a constant ratio between the results calculated from the quasi-static VIE and

SIE. Two more leading terms from the Hankel function have been added into the integral

kernel to solve this problem. We also calculate the internal impedance by using the

different VIEs and the PDE with Dirichlet boundary condition method. The different

VIEs give the same internal impedance. The different results between VIE and PDE

methods are due to the different boundary conditions.

2.1 Introduction

The quasi-static approximation is widely used in electromagnetic (EM) problems

such as analysis of current distributions within conductors [24] and internal impedance of

conductors [20,25]. It is relatively easy to develop the volume integral equation (VIE) for
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calculating the current distribution within a conductor with quasi-static approximation.

The current distributions over conductors’ cross sections can be calculated by method

of moments (MoM) with pulse basis functions and Galerkin’s method [20, 26]. Surface

integral equation (SIE) can also be used to calculate the surface equivalent currents

along the boundary of a conductor [48], and then get the current distributions within

the conductor by using these surface equivalent currents to calculate the electric field

everywhere inside the conductor [27]. Given the same excitation sources, the numerical

results calculated from VIE and SIE should be the same, but we found there is a constant

ratio between them.

In this chapter, we derive the accurate VIE rigorously for the current distributions

within a conductor with arbitrary cross sections, and show the different partial differen-

tial equations (PDEs) obtained in quasi-static approximation and rigorous approaches

require different Green’s functions to get the solutions: logarithm and Hankel functions,

respectively. By expanding the Hankel function for small arguments, two more leading

terms should be added into the quasi-static VIE’s integral kernel to cancel the constant

ratio mentioned above. Numerical results of a square conductor by using the quasi-static

VIE, accurate VIE, and SIE are given.

2.2 Volume Integral Equation (VIE) of the Current

Distribution

The quasi-static approximation is widely used in practical engineering problems like

analysis of current carrying conductors [24], and internal impedance of conductors [20,25].

The volume integral equations (VIE) for the current within a conductor are very easy

to develop by using quasi-static approximation, and the current distribution over cross

section can be calculated by use of method of moments (MoM) with pulse basis functions

and Galerkin’s method [20,48]. In this section, we derive the accurate VIE rigorously for
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the current distribution within a conductor with arbitrary cross sections. The different

partial differential equations (PDEs) obtained in quasi-static approximation and rigorous

approaches require different Green’s functions to get the solutions: logarithm and Hankel

function, respectively. By expanding the Hankel function for small arguments, two more

leading terms should be added into the quasi-static VIE’s integral kernel to cancel the

constant ratio mentioned above. Then, the details of a standard MoM are described to

solve the VIE.

2.2.1 Rigorous derivation for the VIE

Let’s consider the case of a conductor with constitutive parameters permittivity

ε0, permeability µ0, and conductivity σ surrounded by free space or any homogeneous

medium. For time-harmonic case, the Maxwell’s equations are:

∇× E = −jωB (2.1)

∇×H = Jc + jωD (2.2)

∇ ·D = ρe (2.3)

∇ · B = 0 (2.4)

By introducing the magnetic vector potential A, which is related to the magnetic flux

density B in the following way:

B = ∇×A (2.5)

Substituting this into (2.1), the Faraday law yields the electric-field intensity vector E

in terms of A and the scalar potential function φe as:

E = −∇φe − jωA (2.6)

Then substituting (2.5) into (2.2), with Jc = σE, using B = µ0H and D = ε0E, we can

get:

1

µ0

∇×∇×A = (σ + jωε0) E (2.7)
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Since ∇×∇×A = ∇(∇ ·A)−∇2A, substituting this into (2.7) along with (2.6), yields

∇2A + k2
0A = µ0 (σ∇φe + jωσA) +∇ (∇·A + jωµ0ε0φe) (2.8)

where the free space wavenumber is defined as k0 = ω
√
ε0µ0. By applying Lorentz gauge

condition: ∇ ·A + jωµ0ε0φe = 0, the above equation becomes

∇2A + k2
0A = −µ0J (2.9)

where

J = −jωσA + Jimp. (2.10)

Jimp is the impressed current defined as:

Jimp = −σ∇φe = σEimp. (2.11)

For the two-dimensional case, since the conductor is assumed to be infinite long in z-

direction, which is the same direction as the current flows, the impressed Eimp field is

along z-direction as shown in Figure 2.1, J and A have z-component only, A = ẑAz(x, y).

Therefore we have:

∇2Az(x, y) + k2
0Az(x, y) = −µ0Jz(x, y) (2.12)

where

Jz(x, y) = J imp
z (x, y)− jωσAz. (2.13)

With the help of the two-dimensional scalar Green’s function for wave equation, the

solution to (2.12) for magnetic potential Az is given by

Az(ρ) = µ0

∫
s

G0(ρ,ρ′)Jz(ρ
′)ds′. (2.14)

with

G0(ρ,ρ′) =
1

4j
H

(2)
0 (k0|ρ− ρ′|). (2.15)
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where H
(2)
0 (x) is the second kind Hankel function of zero order, and s in (2.14) denotes

the cross section of the conductor. Substituting (2.14) along with (2.15) into (2.13) yields

the accurate volume integral equation (VIE) to be solved for the current distribution:

Jz(ρ) +
ωµ0σ

4

∫
s

Jz(ρ
′)H

(2)
0 (k0|ρ− ρ′|) ds′ = J imp

z . (2.16)

Figure 2.1 A two-dimensional conducting cylinder considering the field Eimp at the
surface as the applied field

2.2.2 Quasi-static approximation for the VIE

The quasi-static case for a good conductor, simply ignores the displacement current

so that (2.7) can be rewritten as follows [20]:

1

µ0

∇×∇×A = J = σE. (2.17)

Then the wave equation (2.12) is reduced to the Laplace’s equation:

∇2Az(x, y) = −µ0Jz(x, y). (2.18)

The solution to Equation (2.18) is known as:

Az(ρ) = µ0

∫
s

G̃0(ρ,ρ′)Jz(ρ
′)ds′ (2.19)
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where G̃0 stands for the logarithmic kernel

G̃0(ρ,ρ′) = − 1

2π
ln(|ρ− ρ′|). (2.20)

Therefore we obtain the VIE under the quasi-static approximation

Jz(ρ)− jωµ0σ

2π

∫
s

Jz(ρ
′) ln (|ρ− ρ′|) ds′ = J imp

z . (2.21)

The above quasi-static VIE was used for calculating current distribution in [24] and [20].

Please note that the sign is different for the second term in left hand side in [24] and [20].

The Hankel function can be replaced by leading term expansion, for small arguments

H
(2)
0 (k0R) = −j 2

π

[
ln(R) + ln

(
γk0

2

)
+ j

π

2
+ · · ·

]
(2.22)

where R = |ρ−ρ′| and γ = 1.781072418 . . .. As the logarithmic function always applied

to dimensionless quantities, we need keep at least one more term ln(γk0/2).

2.2.3 Method of moments

Numerical solution of the VIE is calculated by using the method of moments. The

cross section of the conductor is divided into rectangular cells, as illustrated in Figure 2.2.

The cells may be unequal in area ∆si = witi. Since the Hankel function in (2.16) is

replaced by its small arguments leading term expansion as (2.22), the integral kernel of

(2.16) and (2.21) is logarithmic function and is integrated over a cell ∆sm:∫
∆sm

J(x, y)dxdy ∼
∫

∆sm

∫
s

J(x′, y′) ln
√

(x− x′)2 + (y − y′)2dx′dy′dxdy+

∫
∆sm

J imp
z dxdy

(2.23)

when the cells are sufficiently small, the current density is considered uniform over each

section and to be regarded as a constant in the integration. So, the equation (2.23) is

then expressed as:

J(xm, ym)∆sm ∼
∑
n

J(xn, yn)

∫
∆sm

∫
∆sn

ln
√

(x− x′)2 + (y − y′)2dx′dy′dxdy+J imp
z ∆sm

(2.24)
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The double integral in (2.24) is defined by the geometrical mean distance Smn between

two different cells m and n as reported in [20]:

lnSmn =

∫
∆sm

∫
∆sn

ln
√

(x− x′)2 + (y − y′)2dx′dy′dxdy

∆sm∆sn
(2.25)

Then equation (2.24) is further simplified as:

J(xm, ym) ∼
∑
n

J(xn, yn)∆sn lnSmn + J imp
z (2.26)

m = 1, . . . , N and n = 1, . . . , N , where N is the total number of cells. From (2.26), we

can obtain the final matrix form as (bold capital letters denoting the matrix variables

here):

MJ = Jimp
z (2.27)

We solve the matrix equation (2.27) for J, then we can calculate the spatial distributions

of A by using the J solved:

A(x, y) =
µ0

2π

∑
n

J(xn, yn)

∫
∆sn

ln
√

(x− x′)2 + (y − y′)2dx′dy′ (2.28)

The A(x, y) will be used in calculating the internal impedance by using the definition of

ZPI, which will be introduce in the following sections. The exact expression for lnSmn

is given by [20]:

lnSmn = −25

12
+

1

2wmwntmtn

4∑
i=1

4∑
j=1

(−1)i+jf(qi, rj) (2.29a)

f(q, r) =

(
q2r2

4
− q4

24
− r4

24

)
ln(q2 + r2) +

q3r

3
tan−1

(
r

q

)
+
qr3

3
tan−1

(q
r

)
(2.29b)

where, with reference to Figure 2.2

q1 = l − wm
2
− wn

2

q2 = l +
wm
2
− wn

2

q3 = l +
wm
2

+
wn
2

q4 = l − wm
2

+
wn
2

(2.29c)
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Figure 2.2 Schematic for discretization of rectangular cross-section and geometric mean
distance evaluation.

and

r1 = h− tm
2
− tn

2

r2 = h+
tm
2
− tn

2

r3 = h+
tm
2

+
tn
2

r4 = h− tm
2

+
tn
2

(2.29d)
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For the case that wm = wn = w and tm = tn = t, (2.29c) and (2.29d) become

q1 = l − w

q2 = l = q4

q3 = l + w

r1 = h− t

r2 = h = r4

r3 = h+ t (2.30)

For square cells w = t, lnSmn = ln(0.44705w) = ln(w) − 0.805, as first proposed by

Silvester [24].

2.3 Surface Integral Equation (SIE) of the Current

Distribution

2.3.1 EFIEs for lossy dielectric cylinders

Let’s consider a homogeneous conducting dielectric cylinder with an arbitrary cross

section characterized by permittivity ε, permeability µ, and conductivity σ in the x-y

plane surrounded by free space, illuminated by a transverse magnetic wave (TM-wave).

The surface equivalent sources Jz and Mt are defined on the surface contour Γ. By

considering the equivalent exterior and interior problem, the coupled EFIEs are used

and specialized to the TM polarization to produce [26]

Mt(t) + jk0η0A
(0)
z +

(
∂F

(0)
y

∂x
− ∂F

(0)
x

∂y

)
Γ+

= Einc
z (t) (2.31)

−Mt(t) + jkdηdA
(d)
z +

(
∂F

(d)
y

∂x
− ∂F

(d)
x

∂y

)
Γ−

= 0 (2.32)

where

A(i)
z =

∫
Jz(t

′)
1

4j
H

(2)
0 (kiR)dt′ (2.33)
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F
(i)
t =

∫
t̂(t′)Mt(t

′)
1

4j
H

(2)
0 (kiR)dt′ (2.34)

R =
√

[x(t)− x(t′)]2 + [y(t)− y(t′)]2 (2.35)

t̂ is the unit vector tangent to the cylinder contour, and t is a parametric variable describ-

ing the cylinder surface. The Equation (2.31) is evaluated at an infinitesimal distance

outside the surface contour (Γ+), while Equation (2.32) is evaluated at an infinitesimal

distance inside the surface contour (Γ−).

The wavenumber of the free space and the conducting region are k0 and kd respec-

tively; the intrinsic impedance of the free space and the conducting region are η0 and ηd,

respectively. kd and ηd are given as kd = −j
√
jωµ(σ + jωε) and ηd =

√
jωµ/(jωε+ σ).

MoM is used to solve the unknown Jz and Mt [26, 48]. We used pulse basis function

and point matching method by discretizing the cylinder contour into flat strips. Once

the surface equivalent sources Jz and Mt are calculated, we can use them to calculate

the electric field everywhere inside the conducting cylinder [27]. Therefore, we have the

following equation:

E(x, y) =
kdηd

4

∮
Γ

H
(2)
0 (kdR)Jzdt

′ +
kdj

4

∮
Γ

(
∆x

R
cosφ+

∆y

R
sinφ

)
H

(2)
1 (kdR)Mtdt

′

(2.36)

where Γ is the contour of the cylinder, ∆x = x(t)− x(t′), and ∆y = y(t)− y(t′); φ is the

polar angle defining the outward normal vector.

2.3.2 Method of moments

The cylinder model is discretized into flat strips. We use pulse basis and delta testing

functions to solve this problem, which means that the pulse basis functions are used to

represent the unknowns Jz and Mt, and Equations (2.31) and (2.32) are tested in the

center of each cell in the model. By using the method of moments, we obtain a matrix
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equation having a 2× 2 block structure:[
A B

C D

] [
j

k

]
=

[
E

0

]
(2.37)

where each entry in matrix equation (2.37) is an N × N matrix, whose off-diagonal

elements are

Amn =
k0η0

4

∫
cell n

H
(2)
0 (k0R)dt′ (2.38)

Bmn =
k0

4j

∫
cell n

(
cosφn

∆x

Rm

+ sinφn
∆y

Rm

)
H

(2)
1 (k0Rm)dt′ (2.39)

Cmn =
kdηd

4

∫
cell n

H
(2)
0 (kdR)dt′ (2.40)

Dmn =
kd
4j

∫
cell n

(
cosφn

∆x

Rm

+ sinφn
∆y

Rm

)
H

(2)
1 (kdRm)dt′ (2.41)

where

∆x = xm − x(t′) (2.42)

∆y = ym − y(t′) (2.43)

Rm =
√

(∆x)2 + (∆y)2 (2.44)

and φn is the polar angle defining the outward normal vector to the nth strip in the

model, as shown in Figure 2.3.

The diagonal matrix elements in matrix A cannot be approximated by using Equa-

tions (2.38) because the Hankel function is singular (infinite) if the source and observation

cells are overlapped (m = n). We should use the leading term extraction technique to

deal with this situation. For small arguments, the Hankel function can be expanded as

a power series [49]

H2
0 (x) ≈

(
1− x2

4

)
− j

{
2

π
ln
(γx

2

)
+

[
1

2π
− 1

2π
ln
(γx

2

)]
x2

}
+ · · · (2.45)
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Figure 2.3 Schematic of a source cell with normal and tangent vectors

where

γ = 1.781072418 . . . (2.46)

Since every cell is small enough to be considered flat, the first two leading terms in (2.45)

are retained to produce∫
cell m

H
(2)
0 (k0R)dt′ ≈ 2

∫ wm/2

0

[
1− j 2

π
ln

(
γku

2

)]
du

= wm −
2j

π
wm

[
ln

(
γkwm

4

)
− 1

]
(2.47)

so that

Amm ≈
k0η0wm

4

{
1− 2j

π

[
ln

(
γk0wm

4

)
− 1

]}
(2.48)

The diagonal matrix elements in matrix C can be evaluated by following the exactly

same process mentioned above, so that

Cmm ≈
kdηdwm

4

{
1− 2j

π

[
ln

(
γkdwm

4

)
− 1

]}
(2.49)
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The diagonal matrix elements in B are calculated by constructing the limit because

the integral of (2.39) is evaluated in surface Γ+, which is introduced in [26].

Bmm = lim
x→xm,y→ym

k0

4j

∫
cell m

(
cosφn

∆x

R
+ sinφn

∆y

R

)
H

(2)
1 (k0R)dt′ =

1

2
(2.50)

and same process is used to estimated Dmm:

Dmm = −1

2
(2.51)

The off-diagonal matrix elements of matrix A, B, C and D can be calculated by using

a n-point Gaussian quadrature rule.

2.4 Calculation of Internal Impedance

It is important to realize, not only different current distributions can influence the

p.u.l. internal impedance Zin, but also different definitions of impedance may influence

the final result of Zin.

2.4.1 The definition of ZPI and ZVI

From the energy considerations, the sum of the power dissipated in each subsection

is equal to the total Joule losses; the total magnetic energy stored in the subsections

equals to the energy within the conducting wire. Consequently, the internal impedance

Zin is defined as ZPI

|I|2ZPI =
1

σ

∫∫
s

|J |2ds+ jω

∫∫
s

µ0|H|2ds (2.52)

The internal resistance and inductance can be calculated according to [20]:

ri =

∫
s
|J |2ds
σ|I|2

(2.53)

li =

∫
s
|∇ ×A|2ds
µ0|I|2

. (2.54)
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The internal impedance can also be defined as the Thevenin impedance, which is

obtained as the ratio of the open-circuit voltage at the terminals to the short-circuit

current through the terminals [25]. In [25], the Thevenin theorem was applied to calculate

Zin in a series expression by relating the voltage drop over a small section ∆z to the

longitudinal current through this small section. We can simply call this definition ZVI:

ZVI = −∂V/∂z
Iin

(2.55)

Iin is different from the total current I. In order to use the ZVI definition to calculate the

internal impedance, one must get rid of the part of current that is related to the external

magnetic field. The external magnetic field will vanish if and only if Az outside the

interconnect were constant or, hence, zero, because on the reference at infinity Az = 0.

This is the reason that why the Dirichlet boundary condition Az = 0 should be applied

in the PDE method to determine the current Iin. We can also see that by means of this

boundary condition Az = 0, the proximity effect is avoided.

By using ZVI definition, from the PDE with Dirichlet boundary condition method, we

can get the following double summation expression for internal impedance [25] and [50]:

Z−1
in =

16σ

ab

∞∑
m=1

∞∑
n=1

(
(m−0.5)π

a

)2

+
(

(n−0.5)π
b

)2

(
(m−0.5)π

a

)2 (
(n−0.5)π

b

)2
[(

(m−0.5)π
a

)2

+
(

(n−0.5)π
b

)2

+ jωµ0σ

] (2.56)

We want to emphasize that different definitions of internal impedance decide or desire

different boundary conditions leading to different current distributions. However, we can

also use the ZPI definition and the current distributions calculated from the PDE with

Dirichlet boundary condition method to get the internal impedance. In fact, under the

constant boundary value, we can demonstrate that these two different definitions will

give the same result.
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2.4.2 Different definitions but same boundary conditions

Since it is infinite long in z direction and field distributions invariance with z, also

considering the TMz case, we only have Ez and Ht component. From Maxwell Equations

(2.1) and (2.2) along with (2.6), only ignoring the displacement current, equations (2.1),

(2.2) and (2.6) become:

x̂
∂Ez
∂y
− ŷ ∂Ez

∂x
= −jωµ (x̂Hx + ŷHy) (2.57)

∂Hy

∂x
− ∂Hx

∂y
= σEz (2.58)

Ez = −∂φe
∂z
− jωAz (2.59)

Here, the ZVI definition (2.55) can be rewritten as ZVI = −∂φe/∂z
I

. In this case, the

current I can be expressed as two forms: I =
∮
c
Htdl and I =

∫∫
s
σEzds. From Stokes’

theorem, we know that if we only consider the conducting current, we should have the

same current from these two forms of current I. Then, we have:

ZVI =
Ez + jωAz

I
=

∫∫
s
(Ez + jωAz)(σEz)

∗ds∫∫
s
I(σEz)∗ds

=
σ
∫∫

s
(EzE

∗
z + jωAzE

∗
z )ds

|I|2
(2.60)

The equation (2.60) is further simplified as:

ZVI =

∫∫
s
|Jz|2ds
σ|I|2

+ jω

∫∫
s
Az(σE

∗
z )ds

|I|2
(2.61)

And the second part of right hand side of (2.61) can be written using H = 1
µ
∇×A:∫∫

s

Az(σE
∗
z )ds =

∫∫
s

Az

(
∂H∗y
∂x
− ∂H∗x

∂y

)
ds = µ

∫∫
s

|Ht|2ds− pres (2.62)

Then, (2.61) is expressed as:

ZVI =

∫∫
s
|Jz|2ds
σ|I|2

+ jω

(
µ
∫∫

s
|Ht|2ds
|I|2

− pres
|I|2

)
(2.63)
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where

pres = −
∫ b

0

(
AzH

∗
y

∣∣∣∣x=a

x=0

)
dy +

∫ a

0

(
AzH

∗
x

∣∣∣∣y=b

y=0

)
dx

=
1

µ

∫ b

0

[
Az

(
∂A∗z
∂x

) ∣∣∣∣x=a

x=0

]
dy +

1

µ

∫ a

0

[
Az

(
∂A∗z
∂y

) ∣∣∣∣y=b

y=0

]
dx (2.64)

From Equation (2.63), we can see that the internal resistances and inductances of ZVI

and ZPI will be the same if pres is zero. Then, from Equation (2.64), we can see that

pres is equal to zero if Az equal to zero at the boundary, which agrees with the homoge-

neous Dirichlet boundary condition. Therefore, we demonstrate that based on constant

boundary value condition, the different definitions (ZPI vs. ZVI) will give the same in-

ternal resistance and inductance. Thus, based on the PDE with Dirichlet boundary

condition method, the ZPI and ZVI definitions will result the same internal impedance.

A numerical result also confirm this property as illustrated in Figure 2.4: The internal

resistance curve of PDE-Energy is calculated by using ZPI definition while the dots of

PDE-Thevenin is calculated by using ZVI definition. They are both use the PDE with

Dirichlet boundary condition method. However, the VIE method gives different current

distribution and hence show difference internal resistance curve. Latter, more numerical

results are shown to demonstrate that in some specific situations the boundary con-

ditions (hence the current distributions) play a major role in determining the internal

impedance, but not the definitions.

2.5 Numerical Results

Conductors with rectangular cross sections may be the most common and important

shapes due to widely used of microstrip lines. The numerical solution is obtained by

using the method of moments introduced in the above sections. To accelerate the calcu-

lations, we take advantages of two symmetric planes for the rectangular shape as shown

in Figure 2.5, which reduces the original problem to only a quarter. Then we can combine
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Figure 2.4 Internal resistance of a rectangular interconnect with dimensions 381 µm ×
35.56 µm, σ = 5.8 × 107 S/m at different frequencies.

four central-symmetric source sub-bars together as one source sub-bar.Therefore, if the

original matrix has size of N , then the reduced matrix has size of 1/4 N . The modified

program by using such kind of algorithm can significantly reduce the required memories

and running time.

The structure chosen to illustrate the results is with rectangular and square cross

sections, which are divided into rectangular or square sub-sections, where the current

density is considered uniform over each sub-section as shown in Figure 2.2. The divided

sub-sections may have different areas. The accurate VIE (2.16) and quasi-static VIE

(2.21) are integrated over a sub-section, as described in the above subsections. For the

VIE, there are m cells on the width, n cells on the thickness, giving a total of m × n
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sub-sections. The observation points for electric fields using in (2.36) are positioned just

as the center points of the m× n sub-sections.

Figure 2.5 Schematic diagram of the fast algorithm for VIE-MoM matrix

2.5.1 Validation

First, we do some validations by comparing the numerical results from our methods

with the results from published literature. Since we consider SIE as the accurate solution

to current distribution and use the results calculated from SIE as reference to analyze the

different VIEs, we must validate the results from our SIE method. Figure 2.6 shows the

normalized electric current distribution along perfect electric conductor (PEC) square

cylinder surface. It shows good agreement between our numerical results and the results

from [51] and [52]. Figure 2.7 shows the normalized electric and magnetic current distri-
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bution along dielectric rectangular cylinder surface. We can see that except the corner

singularity (point B and C), our data and reference data from [27] and [53] show very

good agreements. Figure 2.8 shows several typical curves for normalized electric current

distribution along PEC square cylinder surface with different dimensions (ka = 1, 5, 10).

One should note that there are strong singularities in each corner (point B and C).

Figure 2.6 Normalized surface electric current distribution along PEC square cylinder
surface with dimension ka = 10; the number of cells for each side is 50.

2.5.2 Current distribution from VIE, SIE and PDE

The first case is an isolated square copper interconnect wire with lengths 5 µm with

a conductivity of σ = 5.76× 107 S/m, at 1 GHz (the skin depths is 2.1 µm). Figure 2.9

presents the 3-D volume current distributions calculated from accurate VIE, one-term
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(a) Normalized electric current

(b) Normalized magnetic current

Figure 2.7 Normalized electric and magnetic current distributions along dielectric rect-
angular cylinder surface with a = 3λ/(1.414π), b = 2a, εr = 2; the number
of cells is 1200 for total four sides
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Figure 2.8 Normalized electric current distribution along PEC square cylinder surface
with ka=1, 5, and 10; the number of cells is 50 for each side

added VIE, quasi-static VIE and SIE. Figure 2.9 gives us the first impression of the

three-dimensional current distributions from different VIEs and SIE. The accurate VIE

and SIE give nearly the same current distribution both in shape and in value. However

the quasi-static VIE and one-term added VIE show similar shape but different values.

Cutting at the center of the current distributions over the square cross section, the

magnitude of electric currents (normalized by σE0), in Figure 2.10(a), is calculated by the

quasi-static VIE, accurate VIE and SIE. It is more clear to see that the accurate VIE gives

much better results than the quasi-static VIE, and agrees with SIEs results very well.

Also note that the shape of the current distribution calculated from the quasi-static VIE

are the same as that from the accurate VIE, because the major difference between two
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Green’s functions is a constant. Since the quasi-static VIE gives the current distribution

in right shape, it still results in right resistance and internal inductance as shown in [24]

and [20]. Figure 2.10(b) shows current distributions for the same square cylinder with 5

µm side length at 1 GHz, but compared the original quasi-static VIE, one term added,

two terms added, and accurate VIE. It shows that if only one more leading term is added

to the quasi-static VIE, the result is still not accurate enough. However, adding two more

leading terms gives more accurate result, which agrees with the accurate VIE very well.

Figure 2.11 depicts the relative root-mean-square (RMS) error for the quasi-static

VIE and the accurate VIE of square cylinder with different dimensions at the same

frequency. As the dimension of the square cylinder reduces, δ/a increases (δ is the skin

depth and a is the side length), the relative RMS error of the quasi-static VIE goes down,

which means that at very low frequencies, the quasi-static VIE approaches to both the

accurate VIE and SIE.

The second case is an isolated rectangular copper interconnect wire with dimensions

381 µm × 35.56 µm, σ = 5.76×107 S/m, at 100 MHz. Figure 2.12 presents the quarterly

3-D volume current distributions calculated from accurate VIE and PDE with Dirichlet

boundary condition methods separately. The current distribution calculated using PDE

is almost uniform near the boundary of the cross section, while the current distribution

calculated using VIE shows the non-uniformity. This difference is due to the different

boundary conditions. Although this PDE with Dirichlet boundary condition method

works for the circular cross section [19], it fails to consider the nature of rectangular

interconnects which should show non-constant distribution on the edge.

2.5.3 Internal impedance

Let’s first look at the low frequency behavior of the internal impedance. The internal

resistance and inductance of an isolated rectangular interconnect with dimensions 50

µm × 20 µm and conductivity 4.1 × 107 S/m, at low frequency (e.g., 100 kHz) are
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Figure 2.9 3D current distribution of a 5 µm square interconnect with conductivity
5.76× 107 S/m, at 1 GHz.
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Figure 2.10 Center cutting current distribution of a 5 µm square interconnect with
conductivity 5.76× 107 S/m, at 1 GHz.
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Figure 2.11 Relative RMS error of the quasi-static VIE and accurate VIE of current dis-
tribution comparing with solutions of the SIE at 1 GHz, with conductivity
5.76 × 107 S/m, the side length is from 1 µm to 5 µm.

investigated. The results from different methods are compared with DC values shown

in Table 2.1 and Table 2.2. Leading term extraction was applied to series summation in

PDE-Thevenin method. For the VIE method, the number of cells was 100 × 40. The

DC p.u.l. internal resistance for such a rectangular interconnect is well known and given

by:

Rdc =
1

σS
(2.65)

At low frequencies, the current distributions calculated by VIE and PDE methods should

be close. The close current distributions lead to almost the same internal resistance but

different internal inductance.

From Table 2.1, it is observed that all the three methods give nearly the same resis-
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Figure 2.12 Quarterly current distribution of a rectangular interconnect with dimen-
sions 381 µm × 35.56 µm, σ = 5.8 × 107 S/m, at 100 MHz.
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Table 2.1 Internal resistance at 100 kHz

Methods Internal resistance (Ω/m)

VIE-ZPI 24.39026

PDE-ZPI 24.39025

PDE-ZVI 24.39025

DC value from (2.65) 24.39024

tance value. The reason comes from two parts: one is that the difference between current

distributions due to different methods almost vanishes at very low frequencies; the other

one is that these two different definitions will always give the same resistance when the

current distribution is calculated from PDE method with homogenous Dirichlet bound-

ary condition. Two different DC internal inductances are listed in Table 2.2. The one

from [25] used an approximate formula, which is considered not accurate enough. The

one from [54] was calculated from a closed-form expression, which was obtained with a

polynomial fit and considered more accurate than the former one. From Table 2.2, we

can see that the different current distributions but not the definitions cause the differ-

ent internal inductances. The current distribution calculated from VIE method is more

accurate than that calculated from PDE method.

Table 2.2 Internal inductance at 100 kHz

Methods Internal resistance (nH/m)

VIE-ZPI 39.4229

PDE-ZPI 31.3361

PDE-ZVI 31.3361

DC value from [25] 31.3361

DC value from [54] 39.4177
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We also calculate the frequency dependent internal resistance of the same structure

from the different current distributions which are obtained by using quasi-VIE, accurate

VIE, and PDE with Dirichlet boundary condition method. From Figure 2.13, we can

see that the accurate VIE and quasi-VIE give the same internal resistance, because the

difference between the current distributions is only the value not the shape. Also, we

can see that the DC resistances of VIE method and PDE method converge to the same

value, which means that when the frequency is low enough, skin effect is not dominant,

the current distributions of VIE and PDE are close. The main reason for the difference

between VIE and PDE methods shown in relative high frequency is the different current

distributions over the cross section, hence the different boundary conditions (constant

vs. non-constant). By using PDE method, the internal resistance becomes rapidly

increasing when the smallest dimension of the block (35.56 µm) gets larger than about

two skin depths (around 14 MHz as shown in Figure 2.13). The reason is that only

skin effect plays a role in determining the current distribution. While by using VIE

method, the calculation of the current distribution additionally consider the influence of

the non-uniformity on the boundary. Therefore, the internal resistance becomes rapidly

increasing as soon as the largest dimension (381 µm) of the interconnect becomes a few

skin depths long, which happens at much lower frequencies than PDE method (around

1 MHz also shown in Figure 2.13).

Figure 2.14 shows the frequency dependent internal resistance of different shapes of

cross sections conducting cylinders by using VIE and PDE methods. The square cross

section has 40 µm side length. The two rectangular cross section cases are 20 µm ×

80 µm and 10 µm × 160 µm, respectively. As we can see, all curves converge to the

same DC p.u.l. internal resistance as predicted from Equation (2.65). Because the cross

sections of these three cases have the same area but different shapes. The difference

between these two methods (VIE and PDE) of square cross section is the smallest, while

the “rect2” (10 µm × 160 µm) shows the biggest difference. The larger ratio between
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Figure 2.13 Frequency dependent internal resistance of a rectangular interconnect with
dimensions 381 µm × 35.56 µm, σ = 5.8 × 107 S/m), calculated from
different current distributions by using different methods.

two sides of rectangular shape gives larger difference between VIE and PDE methods.

For the limiting case, the VIE and PDE methods will give the same internal resistance

if the cylinder has a circular cross section.

2.6 Summary

We develop a rigorous volume integral equation (VIE) without any approximation

for the calculation of the current distribution over two-dimensional conducting cylinder

with arbitrary cross section. We also find that there is a constant ratio between the

quasi-static VIE and surface integral equation (SIE). Furthermore, we find that two
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Figure 2.14 Frequency dependent internal resistance of different shapes of rectangular
interconnects calculated from VIE and PDE methods.

more leading terms from the Hankel function should be added into the integral kernel to

solve this problem. The current distributions calculated from different integral equations

(quasi-static VIE, rigorous VIE, and SIE) are compared. The quasi-static VIE is not

accurate enough for the current distribution, however this does not affect the calculation

of internal impedance.

We also compare different definitions (ZPI vs. ZVI) and boundary conditions for cal-

culation of the internal impedance. We demonstrate that based on constant boundary

value condition, the different definitions (ZPI vs. ZVI) will give the same internal re-

sistance and inductance. The main reason for the difference between VIE and partial

differential equation (PDE) methods shown in relative high frequencies is the different
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current distributions over the cross section, hence the different boundary conditions (con-

stant vs. non-constant). At low frequency range, the skin effect can be ignored and the

current distributions of VIE and PDE are close, hence give almost the same results.

Especially, the DC resistances of VIE method and PDE method converge to the same

value. The larger ratio between two sides of rectangular shape gives larger difference in

internal resistance by using VIE and PDE methods. As the limiting case, the VIE and

PDE methods will give the same internal resistance if the cross section of the cylinder is

circular.
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CHAPTER 3. NOVEL ACCELERATION OF SPECTRAL

DOMAIN APPROACH FOR SHIELDED MICROSTRIP

LINES BY USING LEVIN’S TRANSFORMATION AND

SUMMATION-BY-PARTS

A novel approach, which uses the Levin transformations or the hybrid of the Levin

transformations and summation-by-parts, is presented for the acceleration of the slowly

convergent series that asymptotically behave as 1/nk and sinusoidal functions divided

by nk. This approach does not need the asymptotic expansion for the Green’s functions

and the Bessel functions, which saves the work for finding the asymptotic expansion

coefficients. This approach has been applied to the acceleration of the infinite series

summation in the shielded microstrip problem solved by the spectral domain approach

(SDA) for obtaining accurate solutions of the propagation constant. Effective criteria

of calculating the number of terms used in direct summation before applying the Levin

transformations have been developed in this application. This approach can be easily ex-

tended to handle the multilayered shielded microstrip structure, which will be considered

in next chapter.

3.1 Introduction

The spectral domain approach (SDA), since the outlines and notation of this specific

technique were first given by [55], has been applied to various planar transmission line

structures. For example, this approach can easily give very accurate results for the prop-
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agation constant (β) for shielded microstrip lines. It can lead to a very simple method,

named as spectral domain immitance approach [56], for deriving the dyadic Green’s

functions for generalized multilayered transmission lines. It is also easy to incorporate

the effect of finite thickness and conductivity by using surface integral equations [46].

However, the most significant drawback of SDA is its high computational cost due to

the slow convergence of the spectral infinite summation involved in the calculation of the

elements in the Galerkin matrix [31]. In order to speed up the calculation of the matrix

elements, several acceleration techniques have been proposed in recent decades [31–35].

Most of them used the asymptotic techniques either in spatial domain or spectral do-

main, and recasted matrix elements into various rapidly convergent series. The technique

in [32] recasted the kernel functions in summation into three parts: one with exponential

convergence, one with 1/nk fast convergence, and one with closed form weakly singular

terms. The mid-point summation (MPS) technique reported in [33] and a super conver-

gent series (SCS) approach described in [34] have been applied to obtain fast convergence

for summation of the infinite series in the form of sinusoidal functions divided by nk and

in the form of 1/nk, after the spectral domain asymptotic extractions. Furthermore, two

different fast convergent sine cosine series to accelerate the summation of the leading

term after the asymptotic extraction to the Green’s functions and the Bessel functions

(basis functions) in the spectral domain are used in [35].

In this chapter, a new approach to speed up the SDA for computing the propagation

constant for any mode of a generalized shielded microstrip is proposed. The proposed

approach is versatile so that it can be used to speed up the SDA using a wide range

of basis functions provided that the series asymptotically behave as sinusoidal functions

divided by nk or 1/nk, which is true for most cases. However, the new approach does not

need to do the asymptotic approximation and leading term extractions. Instead, it uses

two expansion coefficients P and Q [49] or Hankel functions to represent Bessel functions

of the first kind, which are numerically solved by using two equations of Bessel functions
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without asymptotic approximation, and then applies an extrapolation method (the Levin

transformations) [36] or the hybrid of the Levin transformations and summation-by-parts

algorithm [57] to handle the infinite summations. Therefore, the new approach gets

rid of the overhead of doing asymptotic expansion and leading term extraction. Some

popular series transformation methods used in electromagnetic problems were introduced

in [37], like the Shanks transformation [38] and Wynn’s ε algorithm [39]. The Levin t

transformation is better than the Shanks transformation, compared by Levin himself [40].

Blakemore et al. in [41] have found that the Levin v transformation is more efficient

than Wynn’s ε algorithm. Therefore, the Levin transformations are adopted in this work.

Furthermore, in order to fully realize good convergence of the Levin transformations, the

number of terms required in direct summation before applying the Levin transformations

has been adaptively calculated. The new approach can obtain accurate results with

relatively small number of terms. It can achieve the same accuracy as high order MPS

or SCS does by using the same number of terms. In addition, it is much simpler to

understand and much easier to implement, since it does not need to do the leading term

extraction, which is the most laborious part of MPS and SCS. A practical application of

this new approach to rapidly obtain accurate results of β for shielded microstrips using

SDA has been shown.

3.2 Shielded Microstrip

Shielded microstrip transmission line is a member of the family of planar microwave

transmission lines. it belongs to the most common planar transmission lines. Figure 3.1

shows a cross section of a shielded microstrip. The region 2 consists of air. The region

1 is filled by a dielectric material with relative permittivity and permeability εr and µr,

respectively. This structure is uniform and infinite along the z axis. The thin metal

casing and the thin metal strip are assumed to be perfect electric conductors (PECs).
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The metal strip at the center is considered as zero thickness PEC. The width of the

metal strip is w and that of the box is 2a.

Figure 3.1 Single layer shielded interconnect with one signal strip.

3.3 Spectral Domain Approach (SDA)

It is well known that the microstrip structure cannot support pure transverse electro-

magnetic (TEM) waves. The solutions for microstrip lines are hybrid modes which are

expressed in terms of a superposition of infinite TEz and TMz modes or TEy and TMy

modes [58]. For the TEz and TMz modes all the field components can be expressed as

two z-components of vector potentials [59]. The following derivation follows the same

procedure as [29] and [60].

3.3.1 Vector potentials

The z dependency of the electric and magnetic field has the form of e−jβz. The vector

potential for TMz mode is

Azi(x, y, z) = −ωεiµi
β

Φ
(e)
i (x, y)e−jβz (3.1)
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and the vector potential for TEz mode is

Fzi(x, y, z) = −ωεiµi
β

Φ
(h)
i (x, y)e−jβz (3.2)

They satisfy homogeneous Helmholtz equation in source free region (y 6= h),

∇2
tΦ

(p)
i (x, y) + (k2

i − β2)Φ
(p)
i (x, y) = 0 (3.3)

where k2
i = ω2εiµi, i = 1, 2, and p = e, h.

The z-components of transverse electric (TE) and transverse magnetic (TM) modes

can be written in terms of Φ
(p)
i (x, y) as

Ezi(x, y, z) = j
k2
i − β2

β
Φ

(e)
i (x, y)e−jβz (3.4)

Hzi(x, y, z) = j
k2
i − β2

β
Φ

(h)
i (x, y)e−jβz (3.5)

The transverse components can be written in terms of ∇tΦ
(p)
i (x, y) as

Eti(x, y, z) = ∇tΦ
(e)
i (x, y)e−jβz − ωµi

β
ẑ ×∇tΦ

(h)
i (x, y)e−jβz (3.6)

Hti(x, y, z) = ∇tΦ
(h)
i (x, y)e−jβz +

ωεi
β
ẑ ×∇tΦ

(e)
i (x, y)e−jβz (3.7)

or in their scalar form as:

Exi(x, y) =
∂Φ

(e)
i

∂x
+
ωµi
β

∂Φ
(h)
i

∂y
(3.8)

Eyi(x, y) =
∂Φ

(e)
i

∂y
− ωµi

β

∂Φ
(h)
i

∂x
(3.9)

Hxi(x, y) =
∂Φ

(h)
i

∂x
− ωεi

β

∂Φ
(e)
i

∂y
(3.10)

Hyi(x, y) =
∂Φ

(h)
i

∂y
+
ωεi
β

∂Φ
(e)
i

∂x
(3.11)

All the fields and the potentials are defined from x = −a to a and can be expanded

as follows.

f̃(m) =

∫ a

−a
dx f̃(x)ejαmx =

∫ a

−a
dx f̃(x) [cos (αmx) + j sin (αmx)] (3.12)

f(x) =
1

2a

∞∑
m=−∞

f̃(m)e−jαmx =
1

2a

∞∑
m=−∞

f̃(m) [(cosαmx)− j sin(αmx)] (3.13)
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where αm = mπ/a. Using the boundary conditions and the properties of Fourier series

[60] we can obtain that m = (n− 1/2) for the even mode (n = 1, 2, . . .).

3.3.2 Fourier transform and general solutions

We define the Fourier series for the potentials Φ
(e)
i (x, y) and Φ

(h)
i (x, y) as follows:

Φ̃
(p)
i (αn, y) =

∫ a

−a
dxΦ

(p)
i (x, y)ejαnx (3.14)

Φ
(p)
i (x, y) =


1
a

∑∞
m=1 Φ̃

(p)
i (αn, y) cos (αnx)

− j
a

∑∞
m=1 Φ̃

(p)
i (αn, y) sin (αnx)

(3.15)

where i = 1, 2, p = e, h and αn = (n− 1/2)π/a.

By taking the Fourier transform of Φ
(e)
i (x, y) and Φ

(h)
i (x, y) with respect to x, the

partial differential equation (3.3) can be reduced to ordinary differential equation. The

wave equation (3.3) now becomes:(
d2

dy2
− γ2

i

)
Φ̃

(p)
i (αn, y) = 0 (3.16)

where γ2
i = α2

n + β2 − k2
i .

The general solutions of the wave equation (3.3) are of the form

Φ̃
(p)
i (αn, y) = A

(p)
i (αn)eγiy +B

(p)
i (αn)e−γiy

= C
(p)
i (αn) sinh(γiy) +D

(p)
i (αn) cosh(γiy) (3.17)

The field components in the spectral domain can be expressed as

Ẽzi(αn, y) = j
k2
i − β2

β
Φ̃

(e)
i (αn, y) (3.18)

H̃zi(αn, y) = j
k2
i − β2

β
Φ̃

(h)
i (αn, y) (3.19)

Ẽxi(αn, y) = −jαnΦ̃
(e)
i (αn, y) +

ωµi
β

∂

∂y
Φ̃

(h)
i (αn, y) (3.20)

H̃xi(αn, y) = −jαnΦ̃
(h)
i (αn, y)− ωεi

β

∂

∂y
Φ̃

(e)
i (αn, y) (3.21)

The normal component Ẽy and H̃y are not needed to solve the problem. And the factor

e−jβz is dropped.
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3.3.3 Boundary conditions

In order to find the unknowns in (3.17), we need to apply the boundary conditions.

Considering PEC boundary conditions at y = 0 and y = h+ d we will get:

Ez1(x, 0) = 0 =⇒ Ẽz1(αn, 0) = 0 =⇒ Φ̃
(e)
1 (αn, 0) = 0

=⇒ Φ̃
(e)
1 (αn, y) = A(αn) sinh(γ1y) (3.22)

Ez2(x, h+ d) = 0 =⇒ Ẽz2(αn, h+ d) = 0 =⇒ Φ̃
(e)
2 (αn, h+ d) = 0

=⇒ Φ̃
(e)
2 (αn, y) = B(αn)

sinh[γ2(h+ d− y)]

sinh(γ2d)
(3.23)

Ex1(x, 0) = 0 =⇒ Ẽx1(αn, 0) = 0 =⇒ ∂

∂y
Φ̃

(h)
1 (αn, y)

∣∣∣∣
y=0

= 0

=⇒ Φ̃
(h)
1 (αn, y) = C(αn) cosh(γ1y) (3.24)

Ex2(x, h+ d) = 0 =⇒ Ẽx2(αn, h+ d) = 0 =⇒ ∂

∂y
Φ̃

(h)
2 (αn, y)

∣∣∣∣
y=h+d

= 0

=⇒ Φ̃
(h)
2 (αn, y) = D(αn)

cosh[γ2(h+ d− y)]

cosh(γ2d)
(3.25)

Now, we have four unknowns A(αn), B(αn), C(αn), and D(αn), so we need four more

boundary conditions to solve for them. The tangential electric fields are continuous

because no surface magnetic currents Ms occur on the interface.

Ẽz1(αn, h) = Ẽz2(αn, h)

=⇒ k2
1 − β2

β
Φ̃

(e)
1 (αn, h) =

k2
2 − β2

β
Φ̃

(e)
2 (αn, h)

=⇒ (k2
1 − β2)A(αn) sinh(γ1h) = (k2

2 − β2)B(αn) (3.26)

Ẽx1(αn, h) = Ẽx2(αn, h)

=⇒ −jαnΦ̃
(e)
1 (αn, h) +

ωµ1

β

∂

∂y
Φ̃

(h)
1 (αn, y)

∣∣∣∣
y=h

= −jαnΦ̃
(e)
2 (αn, h) +

ωµ2

β

∂

∂y
Φ̃

(h)
2 (αn, y)

∣∣∣∣
y=h

=⇒ jαn[A(αn) sinh(γ1h)−B(αn)] =
ω

β
[γ1µ1C(αn) sinh(γ1h) + γ2µ2D(αn) tanh(γ2d)]

(3.27)
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The boundary condition for the magnetic field is written as:

ŷ × (H2 −H1) = Js (3.28)

And, the surface current Js has both x- and z-components:

Js(x, y = h, z) = [x̂Jx(x) + ẑJz(x)] e−jβz (3.29)

In spectral domain, equation (3.28) can be written as:

ŷ ×
[
H̃2(αn, h)− H̃1(αn, h)

]
= x̂J̃x(αn) + ẑJ̃z(αn) (3.30)

H̃z2(αn, h)− H̃z1(αn, h) = J̃x(αn)

=⇒ j
k2

2 − β2

β
D(αn)− j k

2
1 − β2

β
C(αn) cosh(γ1h) = J̃x(αn) (3.31)

and

H̃x2(αn, h)− H̃x1(αn, h) = −J̃z(αn)

=⇒ −jαn
[
D(αn)− C(αn) cosh(γ1h)

]
+
ω

β

[
ε1γ1A(αn) cosh(γ1h) + ε2γ2B(αn)

]
= −J̃z(αn)

(3.32)

Now we have four equations (3.26), (3.27), (3.31) and (3.32) so we can solve for the

four unkowns A, B, C and D.

Ẽx2(αn, h) = −jαnΦ̃
(e)
2 (αn, h) +

ωµ2

β

∂

∂y
Φ̃

(h)
2 (αn, y)

∣∣∣∣
y=h

= −jαnB(αn)− ωµ2

β
γ2 tanh(γ2d)D(αn)

= Gxx(αn, β)J̃x(αn) +Gxz(αn, β)J̃z(αn)

Ẽz2(αn, h) = j
k2

2 − β2

β
Φ̃

(e)
2 (αn, h) = j

k2
2 − β2

β
B(αn)

= Gzx(αn, β)J̃x(αn) +Gzz(αn, β)J̃z(αn)
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where Gxx, Gxz, Gzx, and Gzz are spectral domain Green’s function which is first intro-

duced in [61].

Gxx(αn, β) =
jη2

k2∆

[
µrγ1(α2

n − k2
2) tanh(γ1h) + γ2(α2

n − k2
1) tanh(γ2d)

]
(3.33)

Gxz(αn, β) = Gzx(αn, β) =
jη2αnβ

k2∆

[
µrγ1 tanh(γ1h) + γ2 tanh(γ2d)

]
(3.34)

Gzz(αn, β) =
jη2

k2∆

[
µrγ1(β2 − k2

2) tanh(γ1h) + γ2(β2 − k2
1) tanh(γ2d)

]
(3.35)

∆ = [γ1 tanh(γ1h) + εrγ2 tanh(γ2d)] [γ1 coth(γ1h) + µrγ2 coth(γ2d)] (3.36)

where εr = ε1/ε2 and µr = µ1/µ2.

3.3.4 Method of moments

Now we have two spectral domain equations with two unknowns

Gxx(αn, β)J̃x(αn) +Gxz(αn, β)J̃z(αn) = Ẽx2(αn, h) (3.37)

Gzx(αn, β)J̃x(αn) +Gzz(αn, β)J̃z(αn) = Ẽz2(αn, h) (3.38)

The electric fields and currents at the interface y = h are followed by PEC boundary

condition:

Ex1 = Ex2 = Ez1 = Ez2 =

 0 |x| < w/2

unknown |x| > w/2

There is no current outside PEC strip

Jx(x) = Jz(x) =

 unknown |x| < w/2

0 |x| > w/2
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Therefore the product of the tangential field component and the surface current alway

vanish on the whole y = h plane:

Ex2(x)Jx(x) = 0 (3.39)

Ez2(x)Jz(x) = 0 (3.40)

The unknown current J̃x(αn) and J̃z(αn) are be expanded in terms of basis function

J̃xi(αn) and J̃zi(αn):

J̃x(αn) =
Mx∑
i=1

aiJ̃xi(αn) (3.41)

J̃z(αn) =
Mz∑
i=1

biJ̃zi(αn) (3.42)

Jxi(x) is a real odd function, Jzi(x) is a real even function for the dominant mode and

other even modes. According to the properties of Fourier transform, J̃xi(αn) is a purely

imaginary and odd function,J̃zi(αn) is a purely real and even function.

The Parseval’s theorem says that

∞∑
n=1

f̃(n)g̃∗(n) =
1

2a

∫ a

−a
f(x)g∗(x)dx (3.43)

where superscript stars indicate complex conjugation. So we have

∞∑
n=1

Ẽx2(αn, h)J̃xm(αn) = − 1

2a

∫ ∞
−∞

Ex2(x, h)Jxm(x)dx = 0 (3.44)

∞∑
n=1

Ẽz2(αn, h)J̃zm(αn) =
1

2a

∫ a

−a
Ez2(x, h)Jzm(x)dx = 0 (3.45)

or

∞∑
n=1

Ẽx2(αn, h)J̃xm(αn) = 0,m = 1, 2, . . . ,Mx (3.46)

∞∑
n=1

Ẽz2(αn, h)J̃zm(αn) = 0,m = 1, 2, . . . ,Mz (3.47)

Equations (3.46) and (3.47) can be written it in matrix form as: Kxx Kxz

Kzx Kzz


 A

B

 =

 0

0


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where

Kpq
ij =

∞∑
n=1

J̃pi(αn)Gpq(αn, β)J̃qj(αn) =
∞∑
n=1

F pq
ij (3.48)

where F pq
ij = J̃pi(αn)Gpq(αn, β)J̃qj(αn), p = x, z and q = x, z. and A and B are vectors

corresponding to the coefficients:

 A

B

 =



a1

...

aMx

b1

...

bMz


(3.49)

The determinant of the matrix should be zero for a homogeneous system to have a non

trivial solution.

D(β, ω) = det

 Kxx Kxz

Kzx Kzz

 = 0 (3.50)

Finally, the propagation constant β, for each frequency point ω can be obtained by

solving det[K] = 0.

3.4 Basis Functions for Currents

There are multiple choices of current basis, which can be divided as two different

kinds: entire domain and sub-domain. The most significant advantage of using entire

domain basis functions is the fast convergence.

3.4.1 Basis choices

It is widely accepted that rate of convergence (here, the convergence refers to the

convergence of final results, like the effective dielectric constant) may be speeded up by
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applying basis functions whose behaviors reflect the physical distribution of the expanded

field or current. However, slow convergence may be associated with the basis set that

satisfies the current singularity at the strip edge when we calculate a single element of

the whole matrix, because its Fourier transform contains Bessel functions.

It is true that some simple assumption of purely longitudinal current distribution that

does not take care of the singularity will also give acceptable accuracy, as in [55] and [62].

But one drawback is that the accuracy is not high (only about 2 significant digits), while

choosing the current basis functions satisfying the edge condition can easily lead to very

high accuracy (like 12 significant digits in [32]). In [63], the author states,“Instead, de-

signers must make do with approximate results, for example, [62], which are achieved

under the assumption of a uniform purely longitudinal current distribution and the ac-

curacy of which can only be estimated. Therefore, it is one of the goals of this paper to

demonstrate how the frequency dependent properties of single and coupled microstrip

lines can be calculated rigorously, accurately and with further reduced computer time

and storage requirements”. In this chapter, we want to show that an accurate descrip-

tion of the current or field near the edge is necessary to evaluate frequency dependent

parameters such as the characteristic impedance, and computations can be carried out

very efficiently if the basis function satisfy the edge condition.

The other thing is that the good accuracy of uniform current distribution or even

higher order approximation is dependent on frequency and constructive parameters (w/h,

w/a, and εr) [64]. In [62], the author states, “The inaccuracy of the quasi-static results

at high frequencies is evident”, and “the numerical results presented here have been

shown to be in agreement with those of other investigators at low frequencies. Consid-

erable departure from the quasi-static results has been shown to occur with increasing

frequency”.

Above all, explicit satisfaction of the edge condition might not be necessary if we only

need roughly accurate results and limited to certain cases (frequency and constructive
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parameters like w/h, w/a, and εr). By choosing basis functions satisfying the appropriate

edge conditions, rate of convergence of final results will be speeded up, the matrix size

will be significantly reduced, and the overall computing time will be saved. The only

deficiency that may be associated with the use of basis functions that satisfies the current

singularity at the strip edge is that the Fourier transforms of its elements contain Bessel

functions which converge slowly and could be a disadvantage from the series summation

point of view.

3.4.2 Chebyshev polynomials

The basis functions for electric currents on the metal strip are chosen such that Jxi(x)

is a real odd function and Jzi(x) is a real even function for the dominant mode and other

even modes. From the properties of Fourier transforms, J̃xi(αn) is a purely imaginary

and odd function, J̃zi(αn) is a purely real and even function. The Fourier transform

for the Chebyshev polynomial along with the weighting function to take care of the

edge singularity for the longitudinal current and the zero at the edges for the transverse

current is the Bessel’s function.

The even mode Jz(x) is an even function, therefore it should be expanded by using

the even order Chebyshev polynomials of the first kind including a term to incorporate

the edge singularities [59].

Jz(x) =
Mz∑
n=1

Izn
T2n−2(2x/w)√

1− (2x/w)2
(3.51)

where T2n(u) satisfies recursive relation [65]

T0(u) = 1

T1(u) = u

T2(u) = 2u2 − 1

Tn(u) = 2uTn−1(u)− Tn−2(u) (3.52)
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The transverse current Jx is proportional to ω, so as frequency decreases it will become

very small compared to Jz, so Jx is normalized with k0w [66]. Jx(x) is an odd function so

it is expanded by using odd order Chebyshev polynomials of the second kind including

a term to make sure that it vanishes at the edges.

Jx(x) = j
√

1− (2x/w)2

Mx∑
n=1

IxnU2n−1(2x/w) (3.53)

where U2n−1 satisfies

U0(u) = 1

U1(u) = 2u

U2(u) = 4u2 − 1

Un(u) = 2uUn−1(u)− Un−2(u) (3.54)

The Fourier transforms of the unknown current J̃x(αn) and J̃z(αn) are expanded in

terms of basis functions J̃xi and J̃zi:

J̃x(αn) =
Mx∑
i=1

aiJ̃xi(αn)k0w (3.55)

J̃z(αn) =
Mz∑
i=1

biJ̃zi(αn) (3.56)

The Fourier transforms of the basis functions are reported in [29]:

J̃x(αn) =
wπ

δn

Mx∑
i=1

Ixii(−1)iJ2i(δn)k0w (3.57)

J̃z(αn) =
wπ

2

Mz∑
i=1

Iz(i−1)(−1)i−1J2(i−1)(δn) (3.58)

where Jn(z) is the Bessel function of the first kind and δn = αnw/2.
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3.5 Leading Term Extraction

3.5.1 Asymptotic approximation to Green’s functions

As αn →∞, we keep the first two terms in Taylor expansion:

γ1 =
√
α2
n + β2 − k2

1 ≈ αn +
β2 − k2

1

2αn
(3.59)

γ2 =
√
α2
n + β2 − k2

2 ≈ αn +
β2 − k2

2

2αn
(3.60)

∆̃ ≈ (εrγ2 + γ1)(µrγ2 + γ1) = εrµrγ
2
2 + (εr + µr)γ1γ2 + γ2

1

≈ α2
n(1 + εr)(1 + µr)

+
1

2
(1 + εr)

[
(β2 − k2

1) + µr(β
2 − k2

2)
]

+
1

2
(1 + µr)

[
(β2 − k2

1) + εr(β
2 − k2

2)
]

(3.61)

Then, the Green’s functions are approximated as:

Gxx ≈ Gxx0αnw
(
1− y2

xx/α
2
n

)
(3.62)

Gxz ≈ Gxz0

(
1− y2

xz/α
2
n

)
(3.63)

Gzz ≈
Gzz0

αnw

(
1− y2

zz/α
2
n

)
(3.64)

where the expressions for the constants Gxx0, Gxz0, Gzz0, y2
xx, y

2
xz, and y2

zz are given

in [65]:

Gxx0 =
1

1 + εr
(3.65)

Gxz0 =
β

(1 + εr)k0

(3.66)

Gzz0 =
(β2 − k2

1) + µr(β
2 − k2

2)

k2
0(1 + εr)(1 + µr)

(3.67)
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y2
xx =

β2

2
+
εrk

2
1 + k2

2

2(1 + εr)
(3.68)

y2
xz =

β2

2
+

(k2
2 − k2

1)(1− µr)
2(1 + µr)

− εrk
2
2 + k2

1

2(1 + εr)
(3.69)

y2
zz = β2 − k2

2 +
1

2

[(k2
2 − k2

1

1 + µr
+
k2

2 − k2
1

1 + εr

)
− (β2 − k2

1)(β2 − k2
2)(1 + µr)

(β2 − k2
1) + µr(β2 − k2

2)

]
(3.70)

3.5.2 Asymptotic expansion for the Bessel function

The series for the Bessel functions are given by [49]:

Jv(z) =

√
2

πz

[
P (v, z) cosχ−Q(v, z) sinχ

]
(3.71)

Yv(z) =

√
2

πz

[
P (v, z) sinχ+Q(v, z) cosχ

]
(3.72)

where

P (v, z) = 1− (µ− 1)(µ− 9)

2!(8z)2
+ · · ·

Q(v, z) =
µ− 1

8z
− (µ− 1)(µ− 9)(µ− 25)

3!(8z)3
+ · · ·

χ = z −
(

1

2
v +

1

4

)
π

and with µ = 4v2. By using the asymptotic forms of the Green’s functions and the Bessel

function for large αn, we can obtain the leading term of F pq
ij , involving terms in the form

of sinusoidal functions divided by αkn (nk) and terms in the form of 1/αkn (1/nk), which

can be evaluated by using midpoint summation method (MPS) [33] or super convergent

series (SCS) method [34].

3.6 The Extrapolation Methods and Summation-by-parts

The most popular extrapolation methods used in electromagnetic problems are Shanks

and Levin’s transformations. So, we briefly introduce them and compare them with em-

phasis on which one is suitable for the acceleration of SDA for shielded microstrip lines.
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The infinite summation to be evaluated is presented as follows:

S =
∞∑
i=1

ui (3.73)

and the partial sum is:

Sn =
n∑
i=1

ui (3.74)

3.6.1 The Shanks and Levin’s transformations

The Shanks transformation belongs to non-linear series acceleration methods. The

ε-algorithm, developed by Wynn [39], is a recursive algorithm for the Shanks transfor-

mation and is the most convenient way to compute the Shanks transformation:

ε
(n)
k+1 = ε

(n+1)
k−1 +

1

ε
(n+1)
k − ε(n)

k

(3.75)

ε
(n)
−1 = 0, ε

(n)
0 = Sn (3.76)

where n and k are the indices for the terms and the order of the transformation respec-

tively (n, k = 0, 1, 2, . . .). Note that only the even order transformations are used, while

the odd order ones are intermediate values. Namely, if S0, . . . , S2k are known, ε
(0)
2k is the

best approximation of S, while if S0, . . . , S2k+1 are know, ε
(1)
2k should be used.

The generalized Levin’s transformation is introduced in [36,40], and is most efficiently

computed by the W algorithm of Sidi [67,68], which is also a recursive formula:

Lk(Sn) =
Sn/ωn
δk(1/ωn)

(3.77)

δk+1(un) =
δk(un+1)− δk(un)

(n+ k + 1)−1 − n−1
, δ0(un) = un (3.78)

where n, k = 0, 1, 2, . . .. Therefore, if S0, . . . , Sk are known, Lk(S0) is the best approxima-

tion of S. Different choices of numerical remainder estimates ωn lead to different versions
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of Levin transformations: if ωn = un, the t transformation is obtained; if ωn = nun, one

will get the u transformation; and ωn = unun+1/(un − un+1) will lead to the v transfor-

mation.

An explicit representation of the generalized Levin transformation is reported as [69]:

S(k)
n =

k∑
m=0

Sn+m
ωn+m

π
(k,m)
n

k∑
m=0

1
ωn+m

π
(k,m)
n

(3.79)

where:

π(k,m)
n =

k∏
r=0
r 6=m

1

xn+r − xn+m

, S(0)
n = Sn (3.80)

xn = 1/(n+1), and k being the order of extrapolation. Theoretically, if Sn, Sn+1, . . . , Sn+k

are known, S
(k)
n is the best approximation of S. But due to machine accuracy limit, the

extrapolation order cannot be too high. And, different choices of remainder estimates

ωn will give different versions of the Levin transformations [40]. For example, the t

transformation is obtained if ωn = un, the u transformation is characterized by ωn = nun,

and ωn = unun+1/(un − un+1) will lead to the v transformation.

It has been found that the direct application of the conventional Levin transforma-

tions to Fourier series (sinusoidal functions) is not appropriate [70,71]. A simple way to

overcome this issue is to apply the accelerators to complex Fourier series and then take

real and imaginary parts of the results [71]. Therefore, we can apply the Euler’s formula

and have the following transform:

∞∑
n=1

sin(nx)

nk
= =

(
∞∑
n=1

ejnx

nk

)
(3.81)

∞∑
n=1

cos(nx)

nk
= <

(
∞∑
n=1

ejnx

nk

)
(3.82)

where x is real. Then, instead of applying the Levin transformations directly to the

series on the left hand sides of (3.81) and (3.82), we can apply the Levin transformations
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Figure 3.2 Comparison of the sinusoidal and exponential functions in the Levin v trans-
formation.

to the series with exponential form first, and then take the imaginary or real part to get

the final results. The advantage of this strategy is illustrated by Figure 3.2 to evaluate∑∞
n=1 sin(nx)/n2 and

∑∞
n=1 cos(nx)/n2, for x = 1/2. The v transformation is adopted

here, and other choices mentioned above will show similar behavior. The reference value

is calculated by using the Riemann Zeta function [72].

Figure 3.2 shows that directly using sine or cosine function in the Levin v transforma-

tion fails to give accurate results, but using exponential function and taking the real or

imaginary part after using the Levin v transformation exhibits very good performance.

The reason can be heuristically explained by observing (3.79): No matter what kind

of the Levin transformations, the remainder estimates ω serves as a denominator, and

exponential form with its constant amplitude will have less singular behaviors than the

sinusoidal form. Furthermore, a modified Levin transformation reported in [73] can be

successfully used to accelerate the Fourier series.
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The asymptotic performance of the slowly convergent series in SDA is in the form of

sinusoidal functions divided by nk or in the form of 1/nk, which are alternating series

and monotonic series, respectively.

For the purpose of comparison between the Shanks and Levin’s transformations, the

results, relative error versus the number of terms used, obtained from different extrap-

olation methods are given in Figure 3.3. The reference values are calculated by using

Riemann Zeta functions [72]. It is observed that the Shanks transformation and all three

versions of Levin transformations work well for alternating series, like sinusoidal func-

tions divided by nk. However, only the Levin u and v transforms work well for both

alternating and monotonic series, and these two transforms perform similarly. There-

fore, we only implement the Levin v transformation to accelerate the series in SDA to

calculate the β of a shielded microstrip line.

3.6.2 Summation-by-parts

The summation-by-parts algorithm is reported in [57]. The key idea is that to find

the efficient evaluation of the infinite remainder RN :

RN =
∞∑
n=N

G̃nfn (3.83)

where G̃n represents the spectral domain Green’s function, which is a slow varying func-

tion, and fn which is a highly oscillatory (sinusoidal in our problem) function. The key

point for us to change the form of RN is that we want the partial sums of fn have closed

formulas in RN . And we obtain the summation-by-parts form of RN as:

RN =
∞∑
n=N

G̃(0)
n f (0)

n =
∞∑
i=1

G̃
(1−i)
N f

(+i)
N−1 (3.84)
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(a)
∑∞

n=1
sin (nx)

n2

(b)
∑∞

n=1
1
n2

Figure 3.3 Relative error for the infinite summation for two different kinds of convergent
series.
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where the successive sums of fn and differences of G̃n is in the following form [57]:

G̃(0)
n = G̃n

G̃(−i)
n = G̃

(1−i)
n+1 − G̃(1−i)

n (3.85)

f (0)
n = fn

f (+i)
n =

∞∑
k=n+1

f
(i−1)
k (3.86)

In general case, fn = ej(nz+α), the series f
(+i)
n can be easily evaluated analytically, thus

obtaining:

f (+i)
n =

∞∑
k=n+1

f
(i−1)
k =

ej[nz+α+i(π+z)/2]

2i [sin(z/2)]i
(3.87)

For special cases, fn = cos(nz + α) or fn = sin(nz + α), f
(+i)
n can be obtained by using

Euler’s formula:

f (+i)
n =

cos [nz + α + i(π + z)/2]

2i [sin(z/2)]i
(3.88)

f (+i)
n =

sin [nz + α + i(π + z)/2]

2i [sin(z/2)]i
(3.89)

Also, the author in [57] mentioned that the summation-by-parts algorithm is less efficient

for very small values of z since (3.87) starts to show a divergence behavior, as indicated

by the sine function in the denominator.

3.7 New Acceleration Approach without Asymptotic

Approximation

In order to use midpoint summation method or super convergent series method, efforts

has to be paid to do high order leading term extraction and errors are introduced due to

the asymptotic approximation after the truncation. However, after we separate the series

into two parts: one part asymptotically behaves as sinusoidal function divided by nk and
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the other asymptotically behaves as 1/nk; we can apply the Levin transformations or

summation-by-parts to evaluate them.

3.7.1 Summation kernel recasting

We cannot simply apply the Levin’s transformation to the F pq
ij in (3.48), since F pq

ij

contains two different types of convergent series. We need to separate them and recast

the summation kernel into a suitable form to be applied in the Levin’s transformation.

We have known that the P and Q in (3.71) and (3.72) are in the form of large

argument asymptotic expansions; however, if we treat P and Q as two unknowns and

(3.71) and (3.72) as two equations, P and Q are solved as the following:

P (v, z) =

√
πz

2

[
Jv(z) cosχ+ Yv(z) sinχ

]
(3.90)

Q(v, z) =

√
πz

2

[
− Jv(z) sinχ+ Yv(z) cosχ

]
(3.91)

Then, without any asymptotic approximation of the Green’s functions and Bessel func-

tions, F pq
ij in (3.48) can be expressed as PQ representation:

F pq
ij (αn)(−1)i+j =

2Gpq

πδn(αnw)δpx(αnw)δqx
(T pq1 + T pq2 + T pq3 ) (3.92)

where

T pq1 = P (vpi, δn)P (vqj, δn) +Q(vpi, δn)Q(vqj, δn)

T pq2 =
[
P (vqj, δn)Q(vpi, δn) + P (vpi, δn)Q(vqj, δn)

]
cos(nφ+ θ)

T pq3 =
[
P (vpi, δn)P (vqj, δn)−Q(vpi, δn)Q(vqj, δn)

]
sin(nφ+ θ)

vpi = 2(i− δpz), vqj = 2(j − δqz).

δpq =

 1, p = q

0, p 6= q

with φ = πw/a and θ = −φ/2.



www.manaraa.com

66

Similarly, we can represent the Bessel functions of the first kind using Hankel functions

without any approximation as:

Jv(z) =
H

(1)
v (z) +H

(2)
v (z)

2
(3.93)

Then, F pq
ij can be written as Hankel representation:

F pq
ij (αn)(−1)i+j =

Gpq

4(αnw)δpx(αnw)δqx

(
T h1 + T h2 + T h3

)
(3.94)

where

T h1 = H(1)
vpi

(δn)H(2)
vqj

(δn) +H(1)
vqj

(δn)H(2)
vpi

(δn)

T h2 = H(1)
vpi

(δn)H(1)
vqj

(δn)

T h3 = H(2)
vpi

(δn)H(2)
vqj

(δn)

The series that arise from (3.92) and (3.94) have either of the forms
∞∑
n=1

an, or Fourier

series
∞∑
n=1

[an cos (nφ) + bn sin (nφ)], where an ∼ 1/nk and bn ∼ 1/nk for n → ∞. The

part in the form of
∞∑
n=1

an can be evaluated by using the Levin transformations, and the

part in the form of
∞∑
n=1

[an cos (nφ) + bn sin (nφ)] can be evaluated by using the Levin

transformations or summation-by-parts. For a nonsymmetrical structure, the only dif-

ference in the formula is that the Fourier transforms of the basis functions will contain

sin(αnc) or cos(αnc), in which c represent the distance from the center of the metal strip

to the vertical axis. By using Euler’s formula, one can convert sine and cosine functions

to exponential functions, and then follows the similar procedures to apply the Levin

transformations.

The Figure 3.4 shows that applying the Levin’s transformation to the original summa-

tion kernal F pq
ij (denoted as KZZ

1 in Figure 3.4) will fail. We must recast the summation

kernal to the suitable form (like Hankel representation, which is denoted as KZZ
2 in

Figure 3.4) in order to be successfully applied in the Levin’s transformation.
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Figure 3.4 Convergence performance comparison of matrix element Kzz
11 by using orig-

inal representation of F pq
ij and Hankel representation of F pq

ij in the Levin’s
transformation
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3.7.2 Extrapolation delay for the Levin’s transformation

It is well known that the asymptotic form of the Bessel functions of the first kind for

small arguments is expressed as [58]:

Jv(z) ' 1

v!

(z
2

)v
z → 0, v > 0 (3.95)

whose value decreases more and more rapidly as the order v becomes larger and larger.

Therefore, if the orders of the Bessel functions of the first kind in (3.90) and (3.91) are

big, the calculated P and Q will suffer a large error due to the machine accuracy limit.

Thus, we need to do direct summation by using certain number of the original term F pq
ij

in (3.48), and then apply the novel approach by using the term F pq
ij in (3.92) or (3.94).

We call this extrapolation delay and define it as follows:

Kpq
ij =

Nd∑
n=1

F pq
ij +

∞∑
n=Nd+1

F pq
ij p = x, z and q = x, z (3.96)

whereNd is the number of original terms F pq
ij used in direct summation. IfNd > 0, we first

do the direct summation and then apply the Levin transformations to the remainder.

If Nd = 0, we don’t need the direct summation and apply the Levin transformation

from the very beginning. The number of original terms used in direct summation in

(3.96) calculated from the first criterion, denoted as Nd1 , can be estimated from the first

maximum point of the Bessel functions of the first kind, which is also the first real zero

of the first derivative of the Bessel functions of the first kind. The asymptotic expansion

of the first real zero of the first derivative of the Bessel functions of the first kind is given

as [49]:

j′v,z ∼ v + 0.8086v1/3 + . . . (3.97)

However, as we observe, if the maximum order between vpi and vqj is picked, the obtained

Nd1 will far exceed the actually terms needed in extrapolation delay. Based on our

numerical tests, it is safe to keep one term in (3.97) and pick the minimum order between
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vpi and vqj. Then, since we know that z = δn = πw(n − 1/2)/(2a) in this problem, we

can simply obtain Nd1 as:

Nd1 =

⌈
2a

πw
min(vpi, vqj)

⌉
(3.98)

As mentioned above, the first term in the right-hand side of (3.92) and (3.94) is in

the asymptotic form of 1/nk, which exhibits monotonic convergence and is evaluated by

the Levin transformations. However, we also need to quantify after how many terms it

will asymptotically decrease as 1/nk, from which we can determine the second criterion

to calculate the number of terms used in direct summation, denoted as Nd2 . If we look

at the first term in the right hand side of (3.92) and (3.94), it is shown that they have

the same form as a sum of two products of Bessel functions as follows:

Pv1Pv2 +Qv1Qv2 = (−1)
v1+v2

2
πz

2
(Jv1Jv2 + Yv1Yv2) (3.99)

H(1)
v1
H(2)
v2

+H(1)
v2
H(2)
v1

= 2 (Jv1Jv2 + Yv1Yv2) (3.100)

Then, by using Jv(z) = Mv cos θv and Yv(z) = Mv sin θv in [49], we rewrite Jv1Jv2 +Yv1Yv2

as:

Jv1Jv2 + Yv1Yv2 = Mv1Mv2 cos (θv1 − θv2) (3.101)

where

Mv1Mv2 =
2

πz

[
1 +

1

2

µ1 − 1

(2z)2
+ · · ·

] 1
2
[
1 +

1

2

µ2 − 1

(2z)2
+ · · ·

] 1
2

∼ 1

z

θv1 − θv2 =
1

2
(v2 − v1)π +

µ2 − µ1 − 2

8z
+ · · · ∼ ξ

z

With the asymptotic expansion of θv1−θv2 , cos(θv1−θv2) can be simplified as the asymp-

totic form of cos(ξ/z), where ξ = (v2
2−v2

1)/2. So, when the argument z keeps increasing,

cos(ξ/z) will approach to 1. We choose the last zero point of cos(ξ/z) as the break-

point, only after which does the series show regular monotonic convergence in the form

of 1/nk. We apply direct summation first, and then apply the Levin transformations



www.manaraa.com

70

to the remaining monotonically convergent series. The number of terms used in direct

summation Nd2 can be found from the last zero of cos(ξ/z) as solving ξ/z = π/2. Also,

we have known that the first leading term of Pv1Pv2 + Qv1Qv2 and H
(1)
v1 H

(2)
v2 + H

(1)
v2 H

(2)
v1

are (−1)
v1+v2

2 4/(πδn) and 1, respectively. If we use their first leading term and evaluate

the difference by using the Levin transformations, we can further reduce the number

of terms used in direct summation, which is found from the second zero to the last of

cos(ξ/z) as solving ξ/z = 3π/2. Finally, with z = δn = πw(n− 1/2)/(2a), we obtain Nd2

as:

Nd2 =

⌈
2a

πw

|v2
pi − v2

qj|
3π

⌉
(3.102)

In order to guarantee the desired accuracy, we need to choose the larger one between

Nd1 and Nd2 :

Nd = max(Nd1 , Nd2) (3.103)

3.8 Numerical Results

The new approach was numerically validated using a shielded microstrip with pa-

rameters εr = 11.7, µr = 1, f = 4 GHz, h = 3.17 mm, w = 3.04 mm, 2a = 37.74 mm,

d = 50 mm in [32].

Figure 3.5-3.8 show the comparisons of the convergence in evaluating matrix elements

Kzz
11 , Kxz

11 , Kxx
11 and Kzz

32 using different approaches: Direct means the direct summation

of series in (3.48), nth lead+SCS refers to nth order leading term extraction with SCS

method [34], LE (PQ) stands for the PQ representation (3.92) with the Levin v trans-

formation, LE (Hankel) represents the Hankel representation (3.94) with the Levin v

transformation, LE (PQ)+SBP means the PQ representation (3.92) with the hybrid of

the Levin v transformation and summation-by-parts, and 1st lead+LE (Hankel) refers to

first leading term extraction of the Hankel representation (3.94) with the Levin v trans-

formation. The result using four leading term extraction SCS with Nmax = 104 is used
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as a reference. It shows that by uisng the criteria of Nd in (3.98), (3.102), and (3.103),

we can guarantee that the performances of new approach match that of the higher order

leading term extraction of SCS, or even better.

Figure 3.5 Convergence of the matrix element Kzz
11 , compared among novel approaches

and other methods; with Nd = 0, β = 5k0.

Figure 3.5 shows the convergence of Kzz
11 , where vpi = vqj = 0. According to (3.98) and

(3.102), Nd1 = Nd2 = 0; therefore Nd = 0. It shows that LE (Hankel) method performs

as good as the 2nd lead SCS method, and 1st lead+LE (Hankel) method performs as good

as the 4th lead SCS method. In Figure 3.6 and 3.7, We can see that the new approaches

perform even better than the SCS method, due to the reason that when the orders of the

Bessel functions of the first kind are higher, the error from asymptotic approximation of

the Bessel functions will ruin the performance of SCS more heavily when using relative

small Nmax. Also, in order to get the better convergence, it is necessary and important

to use the extrapolation delay and the criteria proposed in (3.98), (3.102), and (3.103).
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Figure 3.6 Convergence of the matrix element Kxz
11 , compared among novel approaches

and other methods; with Nd = 0, β = 5k0.
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Figure 3.7 Convergence of the matrix element Kxx
11 , compared among novel approaches

and other methods; with Nd = 0, β = 5k0.
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Figure 3.8 Convergence of the matrix element K32
zz , compared among novel approaches

and other methods; with Nd = 0, β = 5k0.
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The comparison of the Levin v transformation with two different representations is

given in Figure 3.8. Here, vpi = 4 and vqj = 2 for Kzz
32 case. Therefore Nd1 = 7, Nd2 = 5,

then Nd = 7. The performance of LE (Hankel) and LE (PQ)+SBP methods are almost

the same and both are better than LE (PQ) method. This can be explained by two facts:

first, the summation-by-parts algorithm is stabler than extrapolation method for evalu-

ating series in the form of sinusoidal function divided by nk when the orders of the Bessel

functions are high in the series to be evaluated; second, the Hankel representation (3.94)

is better than the PQ representation (3.92) for the Levin transformations in evaluating

the series in the form of sinusoidal function (or complex exponential function) divided

by nk, because the Hankel functions asymptotically perform as the complex exponential

functions, hence are better than the asymptotic performance of P and Q. Furthermore,

the Hankel representation (3.94) is simpler in formula and easier in coding. Therefore,

it is recommended in implementation.

Figure 3.9 shows the relative error of εreff, which is defined as β2/k2
0 and k0 is the

propagation constant in the free space, calculated with and without extrapolation delay:

Nd = 0 represents without extrapolation delay; adaptive Nd represents with extrapola-

tion delay, and Nd is calculated adaptively according to different orders of the Bessel

functions of the first kind by using the criteria (3.98), (3.102), and (3.103). It shows

that if extrapolation delay is not applied, the Levin transformations will fail to give the

accurate solution. This comparison demonstrates that extrapolation delay is necessary

and important in successfully applying the Levin transformations, and the criteria (3.98),

(3.102), and (3.103) proposed above to calculate the Nd are proper.

The comparison of the relative error of εreff by using different approaches is shown in

Figure 3.10: nth lead+MPS refers to nth order leading term extraction with mid-point

summation (MPS) method; others are the same as above. Adaptive Nd is used here.

A result accurate to 12 significant digits (εreff = 8.81004157493) in [32] is taken as a

reference. Since the results are similar whether using an odd number of leading term or
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Figure 3.9 Convergence of εreff using the Levin v transformation with the Hankel rep-
resentation, with and without Nd; Mx = 3, Mz = 4.

the next even number of leading term in MPS or SCS, we only compare with even number

of leading term (2nd and 4th order leading term extraction) in MPS and SCS. Compared

with MPS [33] and SCS [34], the new approaches will achieve the same accurate result

or even more accurate results than high order leading term extraction with just a few

number of terms. It is observed that by using the new approaches, with only 20 terms

used, results accurate to 5 significant digits can be obtained without any asymptotic

techniques and results accurate to 8 significant digits can be obtained with only first

leading term extraction. Figure 3.11 shows that the overall performance of LE (Hankel)

and LE (PQ)+SBP methods are almost the same.
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Figure 3.10 Convergence of εreff compared among novel approaches and former ap-
proaches, with adaptive Nd; Mx = 3, Mz = 4.

3.9 Summary

The most difficult and important part in applying SDA to solve the microstrip lines

problem is the acceleration of the slowly convergent infinite summation series. We pro-

pose a novel acceleration method based on an extrapolation method–the Levin’s trans-

formation. In order to use the Levin’s transformation, the summation kernel should be

recasted into a suitable form and extrapolation delay must be applied. We also compare

the Levin’s transformation with another popular extrapolation method–Shank’s transfor-

mation and find that Levin’s transformation is capable for accelerating the summation in

SDA. The novel acceleration method does not need to do the asymptotic expansion and

leading term extraction so that the complexity is dramatically reduced. It can achieve

results as accurate as that obtained by using high order leading term extraction in mid-

point summation (MPS) or super convergent series (SCS) methods. Furthermore, the
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Figure 3.11 Convergence of εreff compared between Levin’s transformation and Sum-
mation-by-parts, with adaptive Nd; Mx = 3, Mz = 4.

accuracy can be further improved if we only do the first leading term extraction with

the novel method.
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CHAPTER 4. NOVEL ACCELERATION OF SPECTRAL

DOMAIN IMMITANCE APPROACH FOR GENERALIZED

MULTILAYERED SHIELDED MICROSTRIP LINES USING

THE LEVIN’S TRANSFORMATION

In the previous chapter, the Levin’s transformation and summation-by-parts algo-

rithm have been applied to accelerate the convergence of infinite spectral domain series

in spectral domain approach (SDA). The Levin’s transformation based on novel accel-

eration approach is more powerful when it is used to deal with the multilayered and

multiple strips structures, because the spectral domain Green’s function and current

basis functions are more complicated than that in the previous chapter.

Some extrapolation methods have been reviewed for acceleration of the convergence

of Sommerfeld-type integrals which arise in problems like scatterers embedded in planar

multilayered media [36]. Two different fast convergent sine cosine series, also known as

two fast convergent series (FCS), are used to accelerate the summation of the leading

term after the asymptotic extraction to the Green’s functions and the basis functions in

the spectral domain [35]. And, it has been extended to handle the shielded microstrip

with multiple metal lines in the same layer over a layered substrate [74]. However,

the higher order asymptotic approximation need lots of work to find the leading term

coefficients, and it inevitably bring in errors due to asymptotic approximation of both

the Green’s function and the basis functions. A recent development on the use of the

Levin’s transformation to compute potentials and fields in multilayered media is reported
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in [75].

This chapter extends the novel approach in the previous chapter to speed up the

spectral domain immitance approach (SDIA) of shielded microstrips with multiple metal

strips in the same layer over mutilayered substrates by using one of the most promising

extrapolation methods—the Levin’s transformation [76]. It greatly saves the work for

finding the asymptotic expansion coefficients. Using only the first leading term extrac-

tion, the overall acceleration performance is further improved. Convergence properties

of SDIA by using this method match with or are even better than other acceleration

techniques with high order leading term extraction. It can achieve the same accuracy as

FCS with high-order leading term extraction and the method proposed in [31] by using

the same number of terms. It is much simpler to understand and much easier to imple-

ment, because it does not require the laborious high order leading term extraction. Two

practical cases of this technique to rapidly obtain accurate values of β for multilayered

shielded microstrips have been reported.

4.1 Multilayered Shielded Microstrip Lines

Figure 4.1 shows a general multilayered shielded microstrip structure with M metal

lines with a unique width wi (i = 1, . . . ,M) displaced by a distance ci from the left wall

located on y = 0 plane and extending infinitely in the z direction. The two side walls are

perfect electric conductor (PEC) or perfect magnetic conductor (PMC). The mth layer

is defined by εm, µm and has a thickness Dm. The top and bottom cover layers can be

PEC, PMC, or dielectric extending up to infinity.

4.2 Spectral Domain Immitance Approach

By using the spectral domain immitance approach (SDIA) [56] and the Galerkin

method after expanding the spectral domain source currents as a linear combination of
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Figure 4.1 Shielded multilayered microstrip with multiple metal strips in one of the
layers.
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well chosen basis functions, the expansion coefficients ai and bi are the solutions of a

homogeneous system of linear equations as the following:[
Kxx Kxz

Kzx Kzz

] [
A

B

]
=

[
0

0

]
(4.1)

where A and B are vectors which are proportional to the coefficients ai and bi, respec-

tively. The propagation constant β can be obtained by solving det[K] = 0. The key step

is to develop a simple and quick method to generate the K matrix:

Kpq
(u,i)(v,j) =

∞∑
n=1

F pq
(u,i)(v,j) =

∞∑
n=1

Ĩpu,i−δpzGpq(n, β)Ĩqv,j−δqz (4.2)

where (p, q) ∈ (x, z), Ĩpu,i−δpz refers to the p component of the ith basis for the uth metal

line, and

δpq =

 1, p = q

0, p 6= q
(4.3)

The constant term at n = 0 in (4.2) is skipped here, and the expressions for the Green’s

functions are reported in [35]. A well-established natural set of basis functions is Cheby-

shev polynomials centered around the center of each metal line [59], as it is an entire

domain basis and satisfy the edge condition.

Ĩpu,k(n) =
Jk(αnwu)

[
ejαncu − (−1)ke−jαncu

]
2(αnwu)δpx

(4.4)

where Jk is the kth order Bessel function of the first kind and αn = nπ/a.

4.3 New Acceleration Approach for Spectral Domain Infinite

Summation

4.3.1 Recasting the summation kernel

The original summation kernel cannot be applied in the Levin’s transformation di-

rectly. Our starting point is to recast the Bessel functions of the first kind into Hankel
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functions without any approximation by using the equation (3.93), and the trigonomet-

ric functions into complex exponential functions by using the Euler’s formula. Then,

F pq
(u,i)(v,j) is recasted as:

F̄ pq
(u,i)(v,j) =

GpqC
pq
(u,i)(v,j)

16(αnwu)δpx(αnwv)δqx
(T1 + T2 + T3) (4.5)

where

T1 = H
(1)
i−δpz(zu)H

(1)
j−δqz(zv) (4.6)

T2 = H
(2)
i−δpz(zu)H

(2)
j−δqz(zv) (4.7)

T3 = H
(1)
i−δpz(zu)H

(2)
j−δqz(zv) +H

(1)
j−δqz(zv)H

(2)
i−δpz(zu) (4.8)

Cpq
(u,i)(v,j) =

[
ejαn(cu+cv) + (−1)i+j−δpz−δqze−jαn(cu+cv)

]
−
[
(−1)j−δqzejαn(cu−cv) + (−1)i−δpze−jαn(cu−cv)

]
(4.9)

and zu = αnwu. Now, the kernel is suitable to be applied in the Levin’s transformation,

because the series that arise from (4.5) have either the forms
∞∑
n=1

an and
∞∑
n=1

ane
±jnφ,

where an ∼ 1/nk for n→∞, φ is a constant, and k is an integer. Also, note that T1 and

T2 are always complex conjugates, therefore we only need to compute one of them.

Further improvement can be achieved by using only the first leading term extraction

of the Green’s function Gpq and T3. The leading terms of the Green’s function and the

coefficients are given in [35]. By using Ji(z) = Mi cos θi and Yi(z) = Mi sin θi and their

asymptotic forms in [49]

T3 =
4

παn
√
wuwv

cos
[
αn(wu − wv)−

π

2
(i− j) + . . .

]
(4.10)

Let’s denote L = GpqT3C
pq
(u,i)(v,j)/[(αnwu)

δpx(αnwv)
δqx ], then

∞∑
n=1

L =
∞∑
n=1

(L− L̂) +
∞∑
n=1

L̂ (4.11)
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where L̂ has two types of numerical series:

L̂ ∼ 1

n2

{
sin[αn(wu − wv)± αn(cu ± cv)]
cos[αn(wu − wv)± αn(cu ± cv)]

}
(4.12)

which are alternative strongly convergent series, and can be calculated by using the

Riemann Zeta function [72]. The difference series L− L̂ converges very fast, and is very

efficient to be evaluated using the Levin’s transformation.

4.3.2 Extrapolation delay

The above subsections introduced how to recast the summation kernel into the form

suitable to be applied in the Levin’s transformation. However, the Levin’s transformation

fails in some cases unless we delay the extrapolation after direct summation, because of

the error introduced as a result of cancellation of large numbers and the break point

for the steady asymptotic behavior of the series. The asymptotic form of the Bessel

functions of the first kind for small arguments is well known as [49]:

Jv(z) ' 1

v!

(z
2

)v
z → 0, v > 0 (4.13)

and its value decreases more and more rapidly as the order v becomes larger and larger.

At the very beginning, the value of series T1 and T2 are very large numbers. If the orders

of the Hankel functions in (4.5) are big, the recasted series will suffer a large error at

the very beginning terms due to large numbers cancellation. Thus, direct summation is

applied before the Levin’s transformation as introduced in [77]

Kpq
(u,i)(v,j) =

Nd∑
n=1

F pq
(u,i)(v,j) +

∞∑
n=Nd+1

F̄ pq
(u,i)(v,j) (4.14)

where Nd is the number of original terms F used in direct summation. If Nd = 0,

we don’t need the direct summation and apply the Levin transformation from the very

beginning.

The asymptotic behavior of T3 is an alternative convergent series as cos(nx) or sin(nx)

over n. The break point for the steady asymptotic behavior can be roughly estimated
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from the first maximum point of the Bessel functions of the first kind (the first real zero

of the first derivative). Its asymptotic expansion is given as [49]:

j′v,z ∼ v + 0.8086v1/3 + . . . (4.15)

The error due to the cancellation of large numbers is also avoided if we choose the first

maximum point as the starting point to apply the Levin’s transformation. Therefore,

the first Nd is

Nd1 ≈
a

πmin (wu, wv)
max(i− δpz, j − δqz) (4.16)

When u = v or wu = wv = w in (4.10), T3 converges monotonically as 1/n. In

this situation, the asymptotic expansion of T3 can be written as cos(ξ/z) [77], where

ξ = (v2
i −v2

j )/2, vi = i− δpz, vj = j− δqz, and z = nπw/a. The cos(ξ/z) will approach to

1 as n→∞. The last zero of cos(ξ/z) can be chosen as the breakpoint, only after which

does the series T3 show steady monotonic convergence in the form of 1/n. Therefore, we

obtain the second Nd

Nd2 ≈
a

πw

|(i− δpz)2 − (j − δqz)2|
π

(4.17)

Finally, we choose the larger one between Nd1 and Nd2

Nd = max(Nd1 , Nd2) (4.18)

4.4 Numerical Results

The new technique is validated by a single metal strip, three-layered shielded mi-

crostrip with parameters as shown in Figure 4.2 and a coupled metal strips, three-layered

shielded microstrip with parameters as shown in Figure 4.3.

Figure 4.4 shows the relative error of εreff, defined as β2/k2
0, calculated with and

without the extrapolation delay. Adaptive Nd means the number of terms used in di-

rect summation is calculated adaptively in each matrix element using the criteria (4.16),
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Figure 4.2 A three-layered shielded microstrip with parameters: εr−2 = εr1 = 1,
εr−1 = 10.2, µri = 1, D−2 = 6.35 mm, D−1 = D1 = 0.635 mm, 2w = 0.635
mm, a = 7.62 mm, and c = a/2.

(4.17), and (4.18). This comparison demonstrates that extrapolation delay is neces-

sary and important in successfully applying the Levin’s transformation, and the criteria

proposed to estimate the Nd are proper.

The comparison of the relative error of εreff by using different approaches is shown in

Figure 4.5. Adaptive Nd is used here. A result accurate to 9 significant digits (β/k0 =

1.58818126) in [35] is taken as a reference. Since the results are similar whether using

an odd number of leading term or the next even number of leading term with FCS,

we only compare with even number of leading term (2nd and 4th order leading term

extraction) in FCS. Compared with FCS [35], the new technique achieves the same or

even more accurate results than the higher order leading term extraction with similar

number of terms. It is observed that by using the new technique, with only 30 terms,

results accurate to 5 significant digits can be obtained without any asymptotic techniques
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Figure 4.3 A three-layered shielded microstrip with two metal lines in the same
layer and parameters: εr−2 = εr1 = 1, εr−1 = 2.2, µri = 1,
D−2 = D−1 = 0.254 mm, D1 = 0.762 mm, a = 2.54 mm, S2 = 0.0127
mm, S1 : 2w1 : S2 : 2w2 : S3 = 89.5 : 20 : 1 : 40 : 49.5.

and results accurate to 7 significant digits can be obtained with only first leading term

extraction.

Finally, we compare our result (β/k0 for the dominant mode) with the ones in [31]

as shown in Table 4.1. Our data converge to the final values which are highlighted by

boldface characters. Our results are very close, although not identical, to the ones in [31].

The convergence rate of our technique without any leading term extraction is better than

their first order approximation method, although the final accuracy is limited to 5 digits.

The convergence rate of our technique with only the first leading term extraction matches

their second order approximation method, and achieves similar final accuracy.

With the help of the proposed technique, the complexity of the SDA and SDIA can

be dramatically decreased because either asymptotic expansion is not involved or only
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Figure 4.4 Convergence of εreff using the Levin’s transformation with and without ex-
trapolation delay for the shielded microstrip with parameters as given in
Figure 4.2 at 1 GHz; Mx = 3, Mz = 4.

first leading term extraction is needed. It achieves convergence rates as fast as or even

faster than high order asymptotic extraction techniques. This technique shows more

advantages when it is extended to deal with the case of multilayered substrates and

multiple strips, for which the spectral domain Green’s function and basis functions are

more complicated. Due to its simplicity and easy implementation, this technique is a

promising alternative to other cumbersome methods such as the asymptotic extraction

techniques used in the past.
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Figure 4.5 Convergence of εreff compared with 2nd and 4th leading term extraction FCS
method for the shielded microstrip with parameters as given in Fig. 4.2 at
1 GHz; Mx = 3, Mz = 4.

4.5 Summary

The acceleration method introduced in Chapter 3 is extended to handle the multiple

metal strips and multilayered shielded microstrip structures. This technique shows more

advantages when it is extended to deal with the multilayered and multiple strips case, for

which the spectral domain Green’s function and basis functions are more complicated.

We recast the summation kernel into a suitable for the Levin’s transformation, and do the

extrapolation delay to ensure the successful application of the Levin’s transformation.

This technique is a promising alternative to other cumbersome methods based on the

asymptotic extraction because of its simplicity and easy implementation.
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Table 4.1 β/k0 of the dominant mode in a coupled metal strips, three-layered shielded
microstrip at 150 GHz and parameters as given in Figure 4.3

N Levin [31] (1st order) 1st lead Levin [31] (2nd order)

5 1.2598679 1.2593177 1.2607169 1.2610062

10 1.2590489 1.2604623 1.2609279 1.2609137

20 1.2610138 1.2608074 1.2609112 1.2609104

30 1.2609057 1.2608630 1.2609101 1.2609103

40 1.2609261 ——– ——– ——–

50 1.2609277 ——– ——- ——–

250 ——– 1.2609103 ——– ——–
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CHAPTER 5. APPROACHES TO HANDLE ARBITRARY

CROSS SECTION AND FINITE CONDUCTIVITY OF

MULTIPLE METAL LINES WITH MULTILAYERED

SUBSTRATES

Most analyses of microstrip lines about its characteristics like propagation constant

were based on the assumption of infinitely thin metal strip and infinite conductivity.

However, microstrip lines are very attractive to achieve high-speed interconnections in

monolithic microwave integrated circuits (MMIC). In this situation, the thickness of the

metal strips cannot be neglected, because the metallization thickness is comparable to

the skin depth and these strips are very close to each other. The strips often have a

trapezoidal-like cross section due to the etching undercuts or electrolytical growth dur-

ing fabrication. And actually, we can see a variety of complicated strip cross sections

existing in MMIC interconnect structures. The microstrip lines would have different

propagation characteristics from the previous ones of assuming zero metallization thick-

ness or assuming finite metallization thickness but with infinite conductivity.

A rigorous analysis of the propagation characteristics of multiple metal strips with ar-

bitrary cross sections and finite conductivity in multilayered shielded microstrip structure

has been developed. A PMCHWT formulation is used in conjunction with the method

of moments (MoM). Both the surface equivalent electric and magnetic currents are used

to determine the fields inside and outside the metal strips, and the basis functions are

chosen as pulse basis for longitudinal direction and triangular basis for transverse direc-



www.manaraa.com

92

tion. The spatial domain integral is calculated in the equivalent internal problem with

the spatial dyadic Green’s functions, while the spectral domain summation is calculated

in the equivalent external problem with the spectral domain dyadic Green’s functions.

5.1 General Models of the Problem

A model of the mutilple metal lines with arbitrary cross section and finite conductivity

in multilayered shielded microstrip is shown in Figure 5.1. The side walls are set to perfect

electric conductor (PEC) or perfect magnetic conductor (PMC). The ith layer is defined

by εi, µi, thickness di and ki = ω
√
εiµi. All the layers are defined above y−axis, and are

numbered from 1 to N . The parameters pertaining to layer i with boundaries at hi and

hi+1 are distinguished by a subscript i. The top and bottom cover layers can be PEC,

PMC or dielectrics extending up to infinity. The real metal strips with arbitrary cross

sections are located between region 0 and region N + 1, and can be totally embedded in

one certain layer or embedded cross different layers. The wave is assumed to propagate

along the x direction.

5.2 2D PMCHWT Formulations

By using the surface equivalence principle and introducing the equivalent surface

electric current Js and magnetic current Ms, we can define the external and internal

problems. In the external problem, the electromagnetic fields outside the dash contours

are calculated from the equivalent sources as illustrated in Figure 5.2. In the internal

problem, the electromagnetic fields inside the dash contours are calculated from the

equivalent sources in Figure 5.3.

Then, by using both external and internal surface equivalences, we obtain the electric

field integral equations (EFIEs) and magnetic field integral equations (MFIEs):

n̂× Ei = −1

2
Ms − n̂× Es

l (Js,Ms) (5.1)
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Layer i
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ε2, μ2

εi, μi
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h2
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hN+1

0
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… …

PEC, PMC or Dielectric
extending to Infinity

PEC, PMC or Dielectric
extending to Infinity

h1

Conductor 1

Conductor j

Conductor 2

hi+1

hN

Figure 5.1 Shielded multilayered microstrip with multiple arbitrary cross-section metal
strips.
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Figure 5.2 External equivalent problem
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Figure 5.3 Internal equivalent problem

0 =
1

2
Ms − n̂× Es

h (Js,Ms) (5.2)

n̂×Hi =
1

2
Js − n̂×Hs

l (Js,Ms) (5.3)

0 = −1

2
Js − n̂×Hs

h (Js,Ms) (5.4)

where n̂ is the outward unit vector normal to the strip contour as shown in Figure 5.3.

The subscript l represents for external layered medium, while h represents for internal

homogeneous medium. Then, let’s combine two EFIEs and two MFIEs linearly, and take

the linear combination coefficients as 1. We now get the famous PMCHWT formulation

[78–80], and can be written as:

−Ei|tan = [Es
h (Js,Ms) + Es

l (Js,Ms)] |tan (5.5)

−Hi|tan = [Hs
h (Js,Ms) + Hs

l (Js,Ms)] |tan (5.6)
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The general PMCHWT formulations (5.5) and (5.6) are reduced to 2D-PMCHWT by

using Green’s functions and surface equivalent electric and magnetic currents:

−Ei
x = 〈GEJ

xx , Jx〉+ 〈GEJ
xt , Jt〉+ 〈GEM

xx ,Mx〉+ 〈GEM
xt ,Mt〉 (5.7)

−Ei
t = 〈GEJ

tx , Jx〉+ 〈GEJ
tt , Jt〉+ 〈GEM

tx ,Mx〉+ 〈GEM
tt ,Mt〉 (5.8)

−H i
x = 〈GHJ

xx , Jx〉+ 〈GHJ
xt , Jt〉+ 〈GHM

xx ,Mx〉+ 〈GHM
xt ,Mt〉 (5.9)

−H i
t = 〈GHJ

tx , Jx〉+ 〈GHJ
tt , Jt〉+ 〈GHM

tx ,Mx〉+ 〈GHM
tt ,Mt〉 (5.10)

where

GPQ
αβ (ρ,ρ′) = α̂ · ḠPQ(ρ,ρ′) · β̂ (5.11)

and (α, β) ∈ {x, t}. x is the propagation direction (longitudinal direction), and t repre-

sents the transverse direction of the cross section contour on the y− z plane. ḠPQ(ρ,ρ′)

is the dyadic Green’s function (DGF) relating P -type fields at ρ and Q-type current at

ρ′, which are defined as the following:

ḠPQ =
∑

i∈{x,y,z}

∑
j∈{x,y,z}

îĵgPQij (5.12)

and the gPQij are the scalar Green’s functions which include both the internal and external

regions.

gPQij = gPQhij + gPQlij (5.13)

where P ∈ {E,H}, Q ∈ {J,M}, (i, j) ∈ {x, y, z}.

5.3 Dyadic Green’s Functions (DGF)

5.3.1 The DGF of the internal problem

The dyadic Green’s functions (DGF) of the internal problem are derived from the

general three-dimensional DGF in homogeneous medium through the auxiliary potential
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functions with A and F. First, we look at the electric field generated by the electric

current.

Ee = −jωA− j

ωµε
∇(∇ ·A) = −jωµ

∫∫
s

[
Ī +

1

k2
∇∇

]
g · J(r′)ds′ (5.14)

In order to derive the internal problem’s DGF, let’s substitute J(r′) = δ(ρ′ − ρ′′)e−jβx
′

into (5.14):

Ee(x,ρ,ρ′′) = −jωµ
[
Ī +

1

k2
∇t∇t −

jβ

k2
(∇tx̂+ x̂∇t)−

β2

k2
x̂x̂

]
I(x,ρ,ρ′′) (5.15)

where ∇tg = ŷ∂g/∂y + ẑ∂g/∂z, and

I(x,ρ,ρ′′) =

∫ +∞

x′=−∞
g(ρ,ρ′;x, x′)e−jβx

′
dx′ = e−jβxH(ρ,ρ′′) (5.16)

Ix =

∫ +∞

x′=−∞

∂g

∂x
e−jβx

′
dx′ = −jβI (5.17)

Ixx =

∫ +∞

x′=−∞

∂2g

∂x2
e−jβx

′
dx′ = −β2I (5.18)

H(ρ,ρ′′) =
1

4j
H

(2)
0

(
|ρ− ρ′′|

√
k2 − β2

)
(5.19)

The integral definition of (5.16) is from [60].

From the above derivation, we can see that the current J(ρ′)e−jβx will generate

field Ee(ρ)e−jβx. By depressing propagation term e−jβx, we only focus on field Ee(ρ)

generated by current J(ρ′) through the DFG as:

Ee(ρ) = −jωµ〈ḠEJ ,J〉 = −jωµ
∫
c

ḠEJ · J(ρ′)dl′ (5.20)

where

ḠEJ(ρ,ρ′) =

[
Ī +

1

k2
∇t∇t −

jβ

k2
(∇tx̂+ x̂∇t)−

β2

k2
x̂x̂

]
H(ρ,ρ′) (5.21)
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Then, let’s consider the electric field generated by the magnetic current:

Eh = −1

ε
∇× F =

∫∫
s

ḠEM(r, r′) ·M(r′)ds′ (5.22)

where

ḠEM(r, r′) =


0 ∂g

∂z
−∂g
∂y

−∂g
∂z

0 ∂g
∂x

∂g
∂y

− ∂g
∂x

0

 = −∇g × Ī (5.23)

such that:

Eh(ρ) = 〈ḠEM ,M〉 =

∫
c

ḠEM ·M(ρ′)dl′ (5.24)

where

ḠEM(ρ,ρ′) = [x̂ŷ∂z − x̂ẑ∂y − ŷx̂∂z − jβŷẑ + ẑx̂∂y + jβẑŷ]H(ρ,ρ′) (5.25)

5.3.2 The spectral domain DGF of the external problem

Consider a general multilayered medium which is transversely unbounded with re-

spect to the z axis as shown in Figure 5.4. The fields must obey the Maxwell’s equations:

∇× E = −jωµ0µrH−M

∇×H = jωε0εrE + J (5.26)

Assuming the wave is propagating along the x direction with a propagation constant

β, we can solve the hybrid modes solution by decoupling the field into two independent

configurations as TEz(LSE) and TMz(LSM) modes [60]. Therefore, the Fourier transform

is only applied over y:

f̃(α, z) =

∫ a

−a
f(y, z)ejαydy (5.27)

f(y, z) =
1

2π

∫ ∞
−∞

f̃(α, z)e−jαydα (5.28)
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Figure 5.4 A transversely unbounded multilayered medium.

The spatial transverse coordinate ρ = x̂x + ŷy is replaced by its spectral counterpart

kρ = x̂β+ ŷα, and s is the transverse parametric variable on x− y plane. The Maxwell’s

equations (5.26) can be rewrite as [46]:

d

dz
Ẽs =

1

jωε0εr

(
k2

0µrεrĪ− kρkρ
)
·
(
H̃s × ẑ

)
+

J̃z
ωε0εr

kρ − M̃s × ẑ (5.29a)

d

dz
H̃s =

1

jωµ0µr

(
k2

0µrεrĪ− kρkρ
)
·
(
ẑ × Ẽs

)
+

M̃z

ωµ0µr
kρ − ẑ × J̃s (5.29b)

−jωε0εrẼz = jkρ ·
(
H̃s × ẑ

)
+ J̃z (5.29c)

−jωµ0µrH̃z = jkρ ·
(
ẑ × Ẽs

)
+ M̃z (5.29d)

We can simplify the subsequent analysis by rotating the spectral domain transverse

components in the (x, y) coordinate by an angle θ to the new coordinate (u, v) as shown

in Figure 5.5:  û

v̂

 =

 cos θ sin θ

− sin θ cos θ


 x̂

ŷ

 (5.30)
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cos θ =
β

kρ
, sin θ =

α

kρ
(5.31)

Then, as reported in [81], two decoupled sets of transmission line equations are obtained:

Figure 5.5 Spectral domain coordinate rotation from (x, y) to (u, v).

d

dz
Ẽe
u = −jkzZeH̃e

v +
kρ

ωε0εr
J̃z − M̃v (5.32a)

d

dz
H̃e
v = −jkzY eẼe

u − J̃u (5.32b)

Ẽe
z = − 1

jωε0εr

(
jkρH̃

e
v + J̃z

)
(5.32c)

and

d

dz
Ẽh
v = −jkzZhH̃h

u + M̃u (5.33a)

d

dz
H̃h
u = −jkzY hẼh

v −
kρ

ωµ0µr
M̃z − J̃v (5.33b)
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H̃h
z =

1

jωµ0µr

(
jkρẼ

h
v − M̃z

)
(5.33c)

where the superscript e and h represent the TM and TE respectively, and

Ze =
1

Y e
=

kz
ωε0εr

, Zh =
1

Y h
=
ωµ0µr
kz

(5.34a)

kz =
√
k2

0εrµr − k2
ρ (5.34b)

If we consider the spectral domain electric and magnetic fields Ẽe
u, H̃

e
v as voltage and

current V e, Ie on a TM transmission line. And Ẽh
v , H̃

h
u can be considered as voltage and

current V h, Ih on a TE transmission line. We can express the transverse electric and

magnetic fields as [46]:

Ẽs = ûV e + v̂V h (5.35)

H̃s × ẑ = ûIe + v̂Ih (5.36)

Therefore, the spectral fields now can be expressed as [46]:

Ẽ = ûV e + v̂V h − ẑ 1

jωε0εr

(
jkρI

e + J̃z

)
(5.37)

H̃ = −ûIh + v̂Ie + ẑ
1

jωµ0µr

(
jkρV

h − M̃z

)
(5.38)

We obtain the spectral domain DGF in the (u, v, z) coordinate first, and then rotate

back to the (x, y, z) coordinate by using the formula:
Ax

Ay

Az

 = T−1


g̃uu g̃uv g̃uz

g̃vu g̃vv g̃vz

g̃zu g̃zv g̃zz

T

Jx

Jy

Jz

 (5.39)

where T is the rotation transform matrix and its inverse matrix T−1:

T =


cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 , T−1 = T T =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 (5.40)
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The spectral domain DGF in the (u, v, z) coordinate is given as [46]:

˜̄G
EJ

l = −ûûV e
i − v̂v̂V h

i + ẑû
kρ
ωεm

Iei + ûẑ
kρ
ωε′n

V e
v

+ ẑẑ
1

jωε′n

[
k2
ρ

jωεm
Iev − δ(z − z′)

]
(5.41)

˜̄G
HJ

l = ûv̂Ihi − v̂ûIei − ẑv̂
kρ
ωµm

V h
i + v̂ẑ

kρ
ωε′n

Iev (5.42)

˜̄G
EM

l = −ûv̂V e
v + v̂ûV h

v + ẑv̂
kρ
ωεm

Iev − v̂ẑ
kρ
ωµ′n

V h
i (5.43)

˜̄G
HM

l = −ûûIhv − v̂v̂Iev + ẑû
kρ
ωµm

V h
v + ûẑ

kρ
ωµ′n

Ihi

+ ẑẑ
1

jωµ′n

[
k2
ρ

jωµm
V h
i − δ(z − z′)

]
(5.44)

V p
i , V p

v , Ipi , and Ipv are called as the transmission line Green’s functions. εm and µm are

referred to field points in layer m, while ε′n and µ′n are referred to source points in layer

n. Consider the case that the source and observation points are in the same layer, the

transmission line Green’s functions can be expressed as [46]:

V p
i (z, z′) =

Zp
n

2

[
e−jkzn|z−z

′| +
1

Dp
n

4∑
s=1

Rp
nse
−jkznlns

]
(5.45)

V p
v (z, z′) =

1

2

[
±e−jkzn|z−z′| − 1

Dp
n

4∑
s=1

(−1)sRp
nse
−jkznlns

]
(5.46)

Ipi (z, z′) =
1

2

[
±e−jkzn|z−z′| − 1

Dp
n

4∑
s=1

(−1)b
s
2
cRp

nse
−jkznlns

]
(5.47)

Ipv (z, z′) =
1

2Zp
n

[
e−jkzn|z−z

′| +
1

Dp
n

4∑
s=1

(−1)b
s+1
2
cRp

nse
−jkznlns

]
(5.48)

where p ∈ e, h, and n is the index of the layer:

Dp
n = 1−

←
Γpn
→
Γpnt

p
n (5.49a)
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Rp
n1

=
→
Γpn (5.49b)

Rp
n2

=
←
Γpn (5.49c)

Rp
n3

= Rp
n4 =

←
Γpn
→
Γpn (5.49d)

and dn is the thickness of nth layer and defined as zn+1 − zn:

ln1 = 2zn+1 − (z + z′) (5.50a)

ln2 = (z + z′)− 2zn (5.50b)

ln3 = 2dn + (z − z′) (5.50c)

ln4 = 2dn − (z − z′) (5.50d)

←
Γpn and

→
Γpn are the voltage reflection coefficients looking to the −z and +z direction,

respectively, out of the terminals of section n. These coefficients are calculated from the

iterative relations:

←
Γpn =

Γpn−1,n +
←
Γpn−1t

p
n−1

1 + Γpn−1,n

←
Γpn−1t

p
n−1

(5.51a)

→
Γpn =

Γpn+1,n +
→
Γpn+1t

p
n+1

1 + Γpn+1,n

→
Γpn+1t

p
n+1

(5.51b)

where tpn = e−j2kzndn and:

Γpm,n =
Zp
m − Zp

n

Zp
m + Zp

n
(5.52)

Ze
n =

kzn
ωε0εr,n

(5.53)
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Zh
n =

ωµ0µr,n
kzn

(5.54)

kzn =
√
k2

0εr,nµr,n − (β2 + α2) (5.55)

In view of (5.40), (5.41), (5.42), (5.43) and (5.44), the spectral domain DGF in the

(x, y, z) coordinate is now written as matrix form:

˜̄G
EJ

l =
− cos2 θV e

i − sin2 θV h
i − sin θ cos θ(V e

i − V h
i ) cos θ kρ

ωε′n
V e
v

− sin θ cos θ(V e
i − V h

i ) − sin2 θV e
i − cos2 θV h

i sin θ kρ
ωε′n

V e
v

cos θ kρ
ωεm

Iei sin θ kρ
ωεm

Iei
1

jωε′n

[
k2ρ

jωεm
Iev − δ(z − z′)

]


(5.56)

˜̄G
EM

l =
− sin θ cos θ(V h

v − V e
v ) − sin2 θV h

v − cos2 θV e
v sin θ kρ

ωµ′n
V h
i

cos2 θV h
v + sin2 θV e

v sin θ cos θ(V h
v − V e

v ) − cos θ kρ
ωµ′n

V h
i

− sin θ kρ
ωεm

Iev cos θ kρ
ωεm

Iev 0

 (5.57)

˜̄G
HJ

l =
sin θ cos θ(Iei − Ihi ) sin2 θIei + cos2 θIhi − sin θ kρ

ωε′n
Iev

− cos2 θIei − sin2 θIhi − sin θ cos θ(Iei − Ihi ) − cos θ kρ
ωε′n

Iev

sin θ kρ
ωµm

V h
i − cos θ kρ

ωµm
V h
i 0

 (5.58)

˜̄G
HM

l =
− cos2 θIhv − sin2 θIev − sin θ cos θ(Ihv − Iev) cos θ kρ

ωµ′n
Ihi

− sin θ cos θ(Ihv − Iev) − sin2 θIhv − cos2 θIev sin θ kρ
ωµ′n

Ihi

cos θ kρ
ωµm

V h
v sin θ kρ

ωµm
V h
v

1
jωµ′n

[
k2ρ

jωµm
V h
i − δ(z − z′)

]


(5.59)
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5.4 Current Basis Functions and Shielded Environment

5.4.1 Current basis functions

The surface of the metal strip with an arbitrary cross section is divided into Ns pieces.

As shown in Figure 5.6, t̂i and n̂i are the unit tangential and normal vector to the ith

segment. φi is the polar angle defining the outward normal vector of the ith segment.

Figure 5.6 Spectral domain coordinate rotation from (x, y) to (u, v)

n̂i = cosφiŷ + sinφiẑ (5.60a)

t̂i = − sinφiŷ + cosφiẑ (5.60b)

And u and v are parametric variables describing the local coordinate for each segment:

u = sinφi(y − yci )− cosφi(z − zci ) (5.61a)
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v = cosφi(y − yci ) + sinφi(z − zci ) (5.61b)

y = sinφiu+ cosφiv + yci (5.61c)

z = − cosφiu+ sinφiv + zci (5.61d)

where (yci , z
c
i ) is the coordinate of the center point of ith segment. And y, z have the

following relation in each segment:

y = f(z) = − tanφi(z − zci ) + yci (5.62)

The longitudinal (x) current is expanded as a linear combination of pulse basis-

piecewise constant, and the transverse (t) current on the strip can be written as a linear

combination of rooftop functions-piecewise linear:

Js = x̂
Ns∑
j=1

Jxjbxj + t̂
Ns∑
j=1

Jtjbtj (5.63)

Ms = x̂
Ns∑
j=1

Mxjbxj + t̂
Ns∑
j=1

Mtjbtj (5.64)

where Jxj, Jtj, Mxj, and Mtj are unknown coefficients need to solve, and bxj is the pulse

basis function and btj is the rooftop basis function:

bxj = Π(u/wj)δ
k(v) (5.65)

btj =


u−uj−1

wj
δk(v), uj−1 ≤ u ≤ uj

uj+1−u
wj+1

δk(v), uj ≤ u ≤ uj+1

(5.66)

where Π(x) is the rectangular function, and δk(x) is the Kronecker delta function:

Π(x) =


1, |x| < 1

2

1
2
, |x| = 1

2

0, |x| > 1
2

(5.67)

δk(x) =

 1, x = 0

0, x 6= 0
(5.68)
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5.4.2 Shielded environment and boundary conditions

The external problem is defined in a shielded environment. We represent the effect of

the two side walls by a set of image source radiating in a laterally unbounded medium.

First, let’s look at electric current sources Jx and Jy located at (y, z) inside the rectangu-

lar shield and their images located at (−y, z), as illustrated in Figure 5.7. The two-source

set (the original source plus the image) forms the basic image set (BIS) [46].

Figure 5.7 Electric current sources inside a rectangular shield and their images due to
the y=0 PEC plane.

To maintain the correct boundary conditions at the two side walls, the BIS must be

imaged in the y = a PEC plane, and the new image set must again be imaged in the

y = 0 planes, etc. Thus, a periodic lattice of BISs is obtained, which periods 2a along the

y axis. The currents are infinitely periodic functions, which is denoted as a superscript

p.

Jpλ =
Ns∑
j=1

Jλjb
Jp
λj , Mp

λ =
Ns∑
j=1

Mλjb
Mp
λj (5.69)
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where

bQpλj (y′, z′) =

 bQpλj (y′)δk(z′ − zcj), |φj| = π
2

bλj(z
′)δQpλj (y′) , |φj| 6= π

2

(5.70)

and Q = J or M , λ = x or t. Then, due to the image theory, we have:

bQpxj (y′) =
∞∑

n=−∞

[
bxj(y

′ − 2na) + CQ
x bxj(−y′ − 2na)

]
(5.71)

t̂bQptj (y′) =ŷ
∞∑

n=−∞

[
byj(y

′ − 2na) + CQ
y byj(−y′ − 2na)

]
+ (5.72)

ẑ
∞∑

n=−∞

[
bzj(y

′ − 2na) + CQ
z bzj(−y′ − 2na)

]

δQpxj (y′) =
∞∑

n=−∞

[
δk(y′ − ycj − 2na) + CQ

x δ
k(y′ + ycj − 2na)

]
(5.73)

t̂δQptj (y′) =ŷ
∞∑

n=−∞

[
δk(y′ − ycj − 2na) + CQ

y δ
k(y′ + ycj − 2na)

]
+ (5.74)

ẑ
∞∑

n=−∞

[
δk(y′ − ycj − 2na) + CQ

z δ
k(y′ + ycj − 2na)

]
where

CQ
x = CQ

z

 −1, Q = J

+1, Q = M
, CQ

y =

 +1, Q = J

−1, Q = M
(5.75)

The testing and basis functions are infinite periodic function, which can be expanded as

Fourier series:

f(y′) =
1

2a

∞∑
n=−∞

f̃(αn)e−jαny
′

(5.76)

f̃(αn) =

∫ a

−a
f(y′)ejαny

′
dy′ (5.77)

where αn = nπ/a.
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5.5 Matrix Equations and Method of Moments

With the integral equation (2D-PMCHWT) and the Green’s functions available, also

by introducing the pulse basis and triangular basis, the method of moments (MoM) is

employed to solve the integral equation. The matrix equation is written as:

KExJx
mn KExJt

mn KExMx
mn KExMt

mn

KEtJx
mn KEtJt

mn KEtMx
mn KEtMt

mn

KHxJx
mn KHxJt

mn KHxMx
mn KHxMt

mn

KHtJx
mn KHtJt

mn KHxMx
mn KHtMt

mn





a

b

c

d


=



0

0

0

0


(5.78)

Each matrix element consists two parts: internal part H
PαQβ
mn and external part L

PαQβ
mn :

K
PαQβ
mn = H

PαQβ
mn + L

PαQβ
mn (5.79)

where m,n = 1, . . . , Ns, P ∈ {E,H}, Q ∈ {J,M}, and (α, β) ∈ {x, t}. The propagation

constant β, for each frequency point ω can be found by solving the determinant of (5.78)

equal to zero.

5.5.1 Internal part

From the Green’s function and basis function introduced above and by using the

Galerkin method, we have the following integral:

H
PαQβ
mn = 〈tαm, G

PQ
αβ , b

β
n〉 = 〈α̂tαm, ḠPQ, β̂bβn〉 (5.80)

(1) As P = E and Q = J , we have:

H
EαJβ
mn

−jωµ
= 〈α̂tαm, ḠEJ , β̂bβn〉 (5.81)

= 〈α̂tαm,
[
Ī +

1

k2
∇t∇t −

jβ

k2
(∇tx̂+ x̂∇t)−

β2

k2
x̂x̂

]
, β̂bβn〉

= 〈α̂tαm, H, β̂bβn〉+
1

k2
〈α̂tαm,∇t∇tH, β̂b

β
n〉 −

jβ

k2
〈α̂tαm, (∇tx̂+ x̂∇t)H, β̂b

β
n〉 −

β2

k2
〈α̂tαm, x̂x̂H, β̂bβn〉

= 〈α̂tαm, H, β̂bβn〉 −
1

k2
〈∇t · α̂tαm, H,∇t · β̂bβn〉+

jβ

k2
〈∇t · α̂tαm, H, x̂ · β̂bβn〉

− jβ

k2
〈x̂ · α̂tαm, H,∇t · β̂bβn〉 −

β2

k2
〈x̂ · α̂tαm, H, x̂ · β̂bβn〉
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Since:

〈tm,∇t∇tH,bn〉 = −〈∇t · tm, H,∇t · bn〉 (5.82)

〈tm,∇tx̂H,bn〉 = −〈∇t · tm, H, x̂ · bn〉 (5.83)

〈tm, x̂∇tH,bn〉 = 〈x̂ · tm, H,∇t · bn〉 (5.84)

∇t · fm = −∂f
t
m

∂u
(5.85)

Such that:

HExJx
mn

−jωµ
= 〈txm, H, bxn〉 −

β2

k2
〈txm, H, bxn〉 (5.86)

HExJt
mn

−jωµ
=
jβ

k2
〈txm, H,

∂btn
∂u
〉 (5.87)

HEtJx
mn

−jωµ
= −jβ

k2
〈∂t

t
m

∂u
,H, bxn〉 (5.88)

HEtJt
mn

−jωµ
= 〈ttm, H, btn〉 −

1

k2
〈∂t

t
m

∂u
,H,

∂btn
∂u
〉 (5.89)

(2) As P = E and Q = M , we have:

H
EαMβ
mn = 〈α̂tαm, ḠEM , β̂bβn〉 (5.90)

= 〈α̂tαm, [x̂ŷ∂z − x̂ẑ∂y − ŷx̂∂z − jβŷẑ + ẑx̂∂y + jβẑŷ]H, β̂bβn〉

= 〈x̂ · α̂tαm,
∂H

∂z
, ŷ · β̂bβn〉 − 〈x̂ · α̂tαm,

∂H

∂y
, ẑ · β̂bβn〉 − 〈ŷ · α̂tαm,

∂H

∂z
, x̂ · β̂bβn〉

+ 〈ẑ · α̂tαm,
∂H

∂y
, x̂ · β̂bβn〉 − jβ〈ŷ · α̂tαm, H, ẑ · β̂bβn〉+ jβ〈ẑ · α̂tαm, H, ŷ · β̂bβn〉

Such that:

HExMx
mn = 0 (5.91)
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HExMt
mn = 〈txm,

∂H

∂z
, ŷ · t̂btn〉 − 〈txm,

∂H

∂y
, ẑ · t̂btn〉 = −〈txm,

∂H

∂y
cosφn +

∂H

∂z
sinφn, b

t
n〉

(5.92)

HEtMx
mn = 〈ẑ · t̂ttm,

∂H

∂y
, bxn〉 − 〈ŷ · t̂ttm,

∂H

∂z
, bxn〉 = 〈ttm,

∂H

∂y
cosφm +

∂H

∂z
sinφm, b

x
n〉

(5.93)

HEtMt
mn = −jβ

[
〈ŷ · t̂ttm, H, ẑ · t̂btn〉 − 〈ẑ · t̂ttm, H, ŷ · t̂btn〉

]
(5.94)

= −jβ〈ttm, (− sinφm cosφn + cosφm sinφn)H, btn〉

By using the dual prosperity, we can directly write the following matrix elements:

H
HαJβ
mn = −HEαMβ

mn (5.95)

H
HαMβ
mn =

ε

µ
H
EαJβ
mn (5.96)

5.5.2 External part

By using the spatial domain layered dyadic Green’s function ḠPQ
l , we have the fol-

lowing integral:

L
PαQβ
mn = 〈α̂tPpαi , Ḡ

PQ
l , β̂bQpβj 〉 (5.97)

Then, according to the pulse or triangular basis, we divide the integral into four different

kinds:

LPxQxmn = 〈x̂tPpxi , Ḡ
PQ
l , x̂bQpxj 〉 = lPxQxm,n (5.98)

LPxQtmn = 〈x̂tPpxi , Ḡ
PQ
l , t̂bQptj 〉 =

∑
nt∈{n+

t ,n
−
t }

lPxQtm,nt (5.99)

LPtQxmn = 〈t̂tPpti , Ḡ
PQ
l , x̂bQpxj 〉 =

∑
mt∈{m+

t ,m
−
t }

lPtQxmt,n (5.100)



www.manaraa.com

112

LPtQtmn = 〈t̂tPpti , Ḡ
PQ
l , t̂bQptj 〉 =

∑
mt∈{m+

t ,m
−
t }

∑
nt∈{n+

t ,n
−
t }

lPtQtmt,nt (5.101)

where

l
PαQβ
i,j =

∫
cell i

tPpαi (y, z)du

∫
cell j

GPQ
lαβ(y, y′; z, z′)bQpβj (y′, z′)du′ (5.102)

Then, we need to transfer the spatial integrals (5.102) to summations in spectral

domain, because the spectral domain Green’s functions are well defined in close form.

(1) |φi| = π
2

and |φj| = π
2

l
PαQβ
i,j = sinφi sinφj l̃

PαQβ
i,j (5.103)

By using the integral definition of the delta function and the Parseval’s theorem, also with

the fact that the testing function is a pure real function so that the complex conjugate

function is itself, we obtain:

l̃
PαQβ
i,j =

π

2a2

∞∑
n=−∞

t̃Pp∗αi (αn)G̃PQ
lαβ(αn; zci , z

c
j)b̃

Qp
βj (αn) (5.104)

where b̃Qpβj are the Fourier transforms of the basis functions defined in (5.71) and (5.72):

b̃Qpβj (αn) =

∫ a

−a
bQpβj (y′)ejαny

′
dy′ (5.105)

and t̃Ppαi are the Fourier transforms of the testing functions. The testing functions are

the same as the basis functions by using the Galerkin method. The superscript ∗ means

the complex conjugate.

(2) |φi| 6= π
2

and |φj| = π
2

l
PαQβ
i,j = − cosφi sinφj l̃

PαQβ
i,j (5.106)

where

l̃
PαQβ
i,j =

π

2a2

∞∑
n=−∞

δ̃Pp∗αi (αn)b̃Qpβj (αn)

∫
cell i

tαi(z)G̃PQ
lαβ(αn; z, zcj)dz (5.107)

where δ̃Ppαi are the Fourier transforms of the delta functions defined in (5.73) and (5.74):

δ̃Ppαi (αn) =

∫ a

−a
δPpαi (y′)ejαny

′
dy′ (5.108)
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(3) |φi| = π
2

and |φj| 6= π
2

l
PαQβ
i,j = − sinφi cosφj l̃

PαQβ
i,j (5.109)

where

l̃
PαQβ
i,j =

π

2a2

∞∑
n=−∞

t̃Pp∗αi (αn)δ̃Qpβj (αn)

∫
cell j

bβj(z
′)G̃PQ

lαβ(αn; zci , z
′)dz′ (5.110)

(4) |φi| 6= π
2

and |φj| 6= π
2

l
PαQβ
i,j = cosφi cosφj l̃

PαQβ
i,j (5.111)

where

l̃
PαQβ
i,j =

π

2a2

∞∑
n=−∞

δ̃Pp∗αi (αn)δ̃Qpβj (αn)

∫
cell i

tαi(z)dz

∫
cell j

bβj(z
′)G̃PQ

lαβ(αn; z, z′)dz′ (5.112)

5.6 Numerical Results

The technique is validated by an open rectangular cross section microstrip line sketched

in the Figure 5.8. We set the length of the shielded box twenty times as w to approximate

the open structure. The thickness of the PEC strip is varying, with d/w = 0.2117 and

εr = 9.8. In Figure 5.8, the dispersion curves for the fundamental mode of a rectangular

cross section microstrip line with different strip thickness are shown and compared with

very good agreement to the results obtained by Coluccini et al. [47], by directly deriving

an integral-differential equation formulation in the spectral domain that is subsequently

reduced to a numerically stable one-dimensional electric field integral equation (EFIE) to

handle the open case perfectly conducting microstrip lines with polygonal cross section.
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Figure 5.8 Dispersion curves for the fundamental mode of the rectangular cross section
microstrip line with different strip thickness.
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CHAPTER 6. CONCLUSIONS

In the first part of the dissertation, the current distribution and internal impedance

have been studied by using integral equation methods. A rigorous volume integral equa-

tion (VIE) is developed for the current distribution over two-dimensional conducting

cylinder with arbitrary cross section. It can be reduced to the widely-used quasi-static

VIE in very low frequency. The accurate VIE gives almost the same results as the SIE,

but the quasi-static VIE is not accurate enough for the current distribution as there is

a constant ratio between the quasi-static VIE and SIE. Two more leading terms from

the Hankel function have been added into the integral kernel to solve this problem. The

current distributions calculated from different integral equations are compared and ex-

plained. The comparison of different definitions and boundary conditions for calculation

of the internal impedance shows that it is mainly the different boundary conditions result

in the different values of internal impedance. The different definitions will give the same

internal impedance based on constant boundary value condition.

In the second part of the dissertation, the acceleration methods of the spectral domain

approach (SDA) and approaches to handle the arbitrary cross section finite conductivity

multilayered microstrip have been studied. Acceleration of the infinite series summation

is the most difficult and important part in SDA, and asymptotic techniques as leading

term extraction is the most complicated and time consuming procedure in the approaches

like mid-point summation (MPS) and super convergent series (SCS). With the help of our

proposed approach, the complexity of the SDA can be dramatically decreased because

no asymptotic technique involves or only first leading term extraction needed. By using
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this approach, results are achieved as accurate as or even more accurate than the re-

sults obtained by using high order leading term extraction in MPS or SCS. Furthermore,

the proposed approach is very simple and easy to implement. Then this acceleration

approach is extended to handle the multiple metal lines and multilayered shielded mi-

crostrip lines by recasting the summation kernel into a suitable form for applying the

Levin’s transformation. It achieves convergence rates as fast as or even faster than high

order asymptotic extraction techniques. This technique shows more advantages when

it is extended to deal with the case of multilayered substrates and multiple strips, for

which the spectral domain Green’s function and basis functions are more complicated.

The 2D PMCHWT formulation is developed along with the method of moments (MoM)

to deal with the finite thickness (or arbitrary cross sections) and finite conductivity of

the metal strips embedded in generalized multilayered shielded microstrip. The spatial

and spectral domain dyadic Green’s functions are used and the basis functions are chosen

as pulse and triangular basis functions. The spatial integration is directly calculated in

homogeneous medium in the internal region. While the spatial integration is transfered

to the spectral domain summation by using Fourier transform and Parseval’s theorem in

the external region.
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